summaryrefslogtreecommitdiff
path: root/static/src/_posts/2021-03-01-conditionals-in-ginger.md
diff options
context:
space:
mode:
Diffstat (limited to 'static/src/_posts/2021-03-01-conditionals-in-ginger.md')
-rw-r--r--static/src/_posts/2021-03-01-conditionals-in-ginger.md195
1 files changed, 0 insertions, 195 deletions
diff --git a/static/src/_posts/2021-03-01-conditionals-in-ginger.md b/static/src/_posts/2021-03-01-conditionals-in-ginger.md
deleted file mode 100644
index a8c6e44..0000000
--- a/static/src/_posts/2021-03-01-conditionals-in-ginger.md
+++ /dev/null
@@ -1,195 +0,0 @@
----
-title: >-
- Conditionals in Ginger
-description: >-
- Some different options for how "if" statements could work.
-series: ginger
-tags: tech
----
-
-In the [last ginger post][last] I covered a broad overview of how I envisioned
-ginger would work as a language, but there were two areas where I felt there was
-some uncertainty: conditionals and loops. In this post I will be focusing on
-conditionals, and going over a couple of options for how they could work.
-
-[last]: {% post_url 2021-01-09-ginger %}
-
-## Preface
-
-By "conditional" I'm referring to what programmers generally know as the "if"
-statement; some mechanism by which code can do one thing or another based on
-circumstances at runtime. Without some form of a conditional a programming
-language is not Turing-complete and can't be used for anything interesting.
-
-Given that it's uncommon to have a loop without some kind of a conditional
-inside of it (usually to exit the loop), but it's quite common to have a
-conditional with no loop in sight, it makes more sense to cover conditionals
-before loops. Whatever decision is reached regarding conditionals will impact
-how loops work, but not necessarily the other way around.
-
-For the duration of this post I will be attempting to construct a simple
-operation which takes two integers as arguments. If the first is less than
-the second then the operation returns the addition of the two, otherwise the
-operation returns the second subtracted from the first. In `go` this operation
-would look like:
-
-```go
-func op(a, b int) int {
- if a < b {
- return a + b
- }
- return b - a
-}
-```
-
-## Pattern 1: Branches As Inputs
-
-The pattern I'll lay out here is simultaneously the first pattern which came to
-me when trying to figure this problem out, the pattern which is most like
-existing mainstream programming languages, and (in my opinion) the worst pattern
-of the bunch. Here is what it looks like:
-
-```
- in -lt-> } -if-> out
- }
- in -add-> }
- }
-in -1-> } }
-in -0-> } -sub-> }
-
-```
-
-The idea here is that the operation `if` could take a 3-tuple whose elements
-are, respectively: a boolean, and two other edges which won't be evaluated until
-`if` is evaluated. If the boolean is true then `if` outputs the output of the
-first edge (the second element in the tuple), and otherwise it will output the
-value of the second edge.
-
-This idea doesn't work for a couple reasons. The biggest is that, if there were
-multiple levels of `if` statements, the structure of the graph grows out
-_leftward_, whereas the flow of data is rightwards. For someone reading the code
-to know what `if` will produce in either case they must first backtrack through
-the graph, find the origin of that branch, then track that leftward once again
-to the `if`.
-
-The other reason this doesn't work is because it doesn't jive with any pattern
-for loops I've come up with. This isn't evident from this particular example,
-but consider what this would look like if either branch of the `if` needed to
-loop back to a previous point in the codepath. If that's a difficult or
-confusing task for you, you're not alone.
-
-## Pattern 2: Pattern Matching
-
-There's quite a few languages with pattern matching, and even one which I know
-of (erlang) where pattern matching is the primary form of conditionals, and the
-more common `if` statement is just some syntactic sugar on top of the pattern
-matching.
-
-I've considered pattern matching for ginger. It might look something like:
-
-{% raw %}
-```
- in -> } -switch-> } -> {{{A, B}, _}, ({A,B}-lt->out)} -0-> } -add-> out
-in -1-> } -> } } -1-> } -sub-> out
-in -0-> }
-```
-{% endraw %}
-
-The `switch` operation posits that a node can have multiple output edges. In a
-graph this is fine, but it's worth noting. Graphs tend to be implemented such
-that edges to and from a node are unordered, but in ginger it seems unlikely
-that that will be the case.
-
-The last output edge from the switch is the easiest to explain: it outputs the
-input value to `switch` when no other branches are able to be taken. But the
-input to `switch` is a bit complex in this example: It's a 2-tuple whose first
-element is `in`, and whose second element is `in` but with reversed elements.
-In the last output edge we immediately pipe into a `1` operation to retrieve
-that second element and call `sub` on that, since that's the required behavior
-of the example.
-
-All other branches (in this switch there is only one, the first branch) output
-to a value. The form of this value is a tuple (denoted by enclosed curly braces
-here) of two values. The first value is the pattern itself, and the second is an
-optional predicate. The pattern in this example will match a 2-tuple, ignoring
-the second element in that tuple. The first element will itself be matched
-against a 2-tuple, and assign each element to the variables `A` and `B`,
-respectively. The second element in the tuple, the predicate, is a sub-graph
-which returns a boolean, and can be used for further specificity which can't be
-covered by the pattern matching (in this case, comparing the two values to each
-other).
-
-The output from any of `switch`'s branches is the same as its input value, the
-only question is which branch is taken. This means that there's no backtracking
-when reading a program using this pattern; no matter where you're looking you
-will only have to keep reading rightward to come to an `out`.
-
-There's a few drawbacks with this approach. The first is that it's not actually
-very easy to read. While pattern matching can be a really nice feature in
-languages that design around it, I've never seen it used in a LISP-style
-language where the syntax denotes actual datastructures, and I feel that in such
-a context it's a bit unwieldy. I could be wrong.
-
-The second drawback is that pattern matching is not simple to implement, and I'm
-not even sure what it would look like in a language where graphs are the primary
-datastructure. In the above example we're only matching into a tuple, but how
-would you format the pattern for a multi-node, multi-edge graph? Perhaps it's
-possible. But given that any such system could be implemented as a macro on top
-of normal `if` statements, rather than doing it the other way around, it seems
-better to start with the simpler option.
-
-(I haven't talked about it yet, but I'd like for ginger to be portable to
-multiple backends (i.e. different processor architectures, vms, etc). If the
-builtins of the language are complex, then doing this will be a difficult task,
-whereas if I'm conscious of that goal during design I think it can be made to be
-very simple. In that light I'd prefer to not require pattern matching to be a
-builtin.)
-
-The third drawback is that the input to the `switch` requires careful ordering,
-especially in cases like this one where a different value is needed depending on
-which branch is taken. I don't consider this to be a huge drawback, as
-encourages good data design and is a common consideration in other functional
-languages.
-
-## Pattern 3: Branches As Outputs
-
-Taking a cue from the pattern matching example, we can go back to `if` and take
-advantage of multiple output edges being a possibility:
-
-```
- in -> } -> } -if-> } -0-> } -add-> out
-in -1-> } -> } } } -1-> } -sub-> out
-in -0-> } }
- }
- in -lt-> }
-```
-
-It's not perfect, but I'd say this is the nicest of the three options so far.
-`if` is an operation which takes a 2-tuple. The second element of the tuple is a
-boolean, if the boolean is true then `if` passes the first element of its tuple
-to the first branch, otherwise it passes it to the second. In this way `if`
-becomes kind of like a fork in a train track: it accepts some payload (the first
-element of its input tuple) and depending on conditions (the second element) it
-directs the payload one way or the other.
-
-This pattern retains the benefits of the pattern matching example, where one
-never needs to backtrack in order to understand what is about to happen next,
-while also being much more readable and simpler to implement. It also retains
-one of the drawbacks of the pattern matching example, in that the inputs to `if`
-must be carefully organized based on the needs of the output branches. As
-before, I don't consider this to be a huge drawback.
-
-There's other modifications which might be made to this `if` to make it even
-cleaner, e.g. one could make it accept a 3-tuple, rather than a 2-tuple, in
-order to supply differing values to be used depending on which branch is taken.
-To me these sorts of small niceties are better left to be implemented as macros,
-built on top of a simpler but less pleasant builtin.
-
-## Fin
-
-If you have other ideas around how conditionals might be done in a graph-based
-language please [email me][email]; any and all contributions are welcome! One
-day I'll get around to actually implementing some of ginger, but today is not
-that day.
-
-[email]: mailto:mediocregopher@gmail.com