From 4f01edb9230f58ff84b0dd892c931ec8ac9aad55 Mon Sep 17 00:00:00 2001 From: Brian Picciano Date: Tue, 13 Sep 2022 12:56:08 +0200 Subject: move src out of srv, clean up default.nix and Makefile --- srv/src/http/static/viz/2/goog/math/integer.js | 808 ------------------------- 1 file changed, 808 deletions(-) delete mode 100644 srv/src/http/static/viz/2/goog/math/integer.js (limited to 'srv/src/http/static/viz/2/goog/math/integer.js') diff --git a/srv/src/http/static/viz/2/goog/math/integer.js b/srv/src/http/static/viz/2/goog/math/integer.js deleted file mode 100644 index 6907546..0000000 --- a/srv/src/http/static/viz/2/goog/math/integer.js +++ /dev/null @@ -1,808 +0,0 @@ -// Copyright 2009 The Closure Library Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS-IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/** - * @fileoverview Defines an Integer class for representing (potentially) - * infinite length two's-complement integer values. - * - * For the specific case of 64-bit integers, use goog.math.Long, which is more - * efficient. - * - */ - -goog.provide('goog.math.Integer'); - - - -/** - * Constructs a two's-complement integer an array containing bits of the - * integer in 32-bit (signed) pieces, given in little-endian order (i.e., - * lowest-order bits in the first piece), and the sign of -1 or 0. - * - * See the from* functions below for other convenient ways of constructing - * Integers. - * - * The internal representation of an integer is an array of 32-bit signed - * pieces, along with a sign (0 or -1) that indicates the contents of all the - * other 32-bit pieces out to infinity. We use 32-bit pieces because these are - * the size of integers on which Javascript performs bit-operations. For - * operations like addition and multiplication, we split each number into 16-bit - * pieces, which can easily be multiplied within Javascript's floating-point - * representation without overflow or change in sign. - * - * @struct - * @constructor - * @param {Array} bits Array containing the bits of the number. - * @param {number} sign The sign of the number: -1 for negative and 0 positive. - * @final - */ -goog.math.Integer = function(bits, sign) { - /** - * @type {!Array} - * @private - */ - this.bits_ = []; - - /** - * @type {number} - * @private - */ - this.sign_ = sign; - - // Copy the 32-bit signed integer values passed in. We prune out those at the - // top that equal the sign since they are redundant. - var top = true; - for (var i = bits.length - 1; i >= 0; i--) { - var val = bits[i] | 0; - if (!top || val != sign) { - this.bits_[i] = val; - top = false; - } - } -}; - - -// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the -// from* methods on which they depend. - - -/** - * A cache of the Integer representations of small integer values. - * @type {!Object} - * @private - */ -goog.math.Integer.IntCache_ = {}; - - -/** - * Returns an Integer representing the given (32-bit) integer value. - * @param {number} value A 32-bit integer value. - * @return {!goog.math.Integer} The corresponding Integer value. - */ -goog.math.Integer.fromInt = function(value) { - if (-128 <= value && value < 128) { - var cachedObj = goog.math.Integer.IntCache_[value]; - if (cachedObj) { - return cachedObj; - } - } - - var obj = new goog.math.Integer([value | 0], value < 0 ? -1 : 0); - if (-128 <= value && value < 128) { - goog.math.Integer.IntCache_[value] = obj; - } - return obj; -}; - - -/** - * Returns an Integer representing the given value, provided that it is a finite - * number. Otherwise, zero is returned. - * @param {number} value The value in question. - * @return {!goog.math.Integer} The corresponding Integer value. - */ -goog.math.Integer.fromNumber = function(value) { - if (isNaN(value) || !isFinite(value)) { - return goog.math.Integer.ZERO; - } else if (value < 0) { - return goog.math.Integer.fromNumber(-value).negate(); - } else { - var bits = []; - var pow = 1; - for (var i = 0; value >= pow; i++) { - bits[i] = (value / pow) | 0; - pow *= goog.math.Integer.TWO_PWR_32_DBL_; - } - return new goog.math.Integer(bits, 0); - } -}; - - -/** - * Returns a Integer representing the value that comes by concatenating the - * given entries, each is assumed to be 32 signed bits, given in little-endian - * order (lowest order bits in the lowest index), and sign-extending the highest - * order 32-bit value. - * @param {Array} bits The bits of the number, in 32-bit signed pieces, - * in little-endian order. - * @return {!goog.math.Integer} The corresponding Integer value. - */ -goog.math.Integer.fromBits = function(bits) { - var high = bits[bits.length - 1]; - return new goog.math.Integer(bits, high & (1 << 31) ? -1 : 0); -}; - - -/** - * Returns an Integer representation of the given string, written using the - * given radix. - * @param {string} str The textual representation of the Integer. - * @param {number=} opt_radix The radix in which the text is written. - * @return {!goog.math.Integer} The corresponding Integer value. - */ -goog.math.Integer.fromString = function(str, opt_radix) { - if (str.length == 0) { - throw Error('number format error: empty string'); - } - - var radix = opt_radix || 10; - if (radix < 2 || 36 < radix) { - throw Error('radix out of range: ' + radix); - } - - if (str.charAt(0) == '-') { - return goog.math.Integer.fromString(str.substring(1), radix).negate(); - } else if (str.indexOf('-') >= 0) { - throw Error('number format error: interior "-" character'); - } - - // Do several (8) digits each time through the loop, so as to - // minimize the calls to the very expensive emulated div. - var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 8)); - - var result = goog.math.Integer.ZERO; - for (var i = 0; i < str.length; i += 8) { - var size = Math.min(8, str.length - i); - var value = parseInt(str.substring(i, i + size), radix); - if (size < 8) { - var power = goog.math.Integer.fromNumber(Math.pow(radix, size)); - result = result.multiply(power).add(goog.math.Integer.fromNumber(value)); - } else { - result = result.multiply(radixToPower); - result = result.add(goog.math.Integer.fromNumber(value)); - } - } - return result; -}; - - -/** - * A number used repeatedly in calculations. This must appear before the first - * call to the from* functions below. - * @type {number} - * @private - */ -goog.math.Integer.TWO_PWR_32_DBL_ = (1 << 16) * (1 << 16); - - -/** @type {!goog.math.Integer} */ -goog.math.Integer.ZERO = goog.math.Integer.fromInt(0); - - -/** @type {!goog.math.Integer} */ -goog.math.Integer.ONE = goog.math.Integer.fromInt(1); - - -/** - * @type {!goog.math.Integer} - * @private - */ -goog.math.Integer.TWO_PWR_24_ = goog.math.Integer.fromInt(1 << 24); - - -/** - * Returns the value, assuming it is a 32-bit integer. - * @return {number} The corresponding int value. - */ -goog.math.Integer.prototype.toInt = function() { - return this.bits_.length > 0 ? this.bits_[0] : this.sign_; -}; - - -/** @return {number} The closest floating-point representation to this value. */ -goog.math.Integer.prototype.toNumber = function() { - if (this.isNegative()) { - return -this.negate().toNumber(); - } else { - var val = 0; - var pow = 1; - for (var i = 0; i < this.bits_.length; i++) { - val += this.getBitsUnsigned(i) * pow; - pow *= goog.math.Integer.TWO_PWR_32_DBL_; - } - return val; - } -}; - - -/** - * @param {number=} opt_radix The radix in which the text should be written. - * @return {string} The textual representation of this value. - * @override - */ -goog.math.Integer.prototype.toString = function(opt_radix) { - var radix = opt_radix || 10; - if (radix < 2 || 36 < radix) { - throw Error('radix out of range: ' + radix); - } - - if (this.isZero()) { - return '0'; - } else if (this.isNegative()) { - return '-' + this.negate().toString(radix); - } - - // Do several (6) digits each time through the loop, so as to - // minimize the calls to the very expensive emulated div. - var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 6)); - - var rem = this; - var result = ''; - while (true) { - var remDiv = rem.divide(radixToPower); - // The right shifting fixes negative values in the case when - // intval >= 2^31; for more details see - // https://github.com/google/closure-library/pull/498 - var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0; - var digits = intval.toString(radix); - - rem = remDiv; - if (rem.isZero()) { - return digits + result; - } else { - while (digits.length < 6) { - digits = '0' + digits; - } - result = '' + digits + result; - } - } -}; - - -/** - * Returns the index-th 32-bit (signed) piece of the Integer according to - * little-endian order (i.e., index 0 contains the smallest bits). - * @param {number} index The index in question. - * @return {number} The requested 32-bits as a signed number. - */ -goog.math.Integer.prototype.getBits = function(index) { - if (index < 0) { - return 0; // Allowing this simplifies bit shifting operations below... - } else if (index < this.bits_.length) { - return this.bits_[index]; - } else { - return this.sign_; - } -}; - - -/** - * Returns the index-th 32-bit piece as an unsigned number. - * @param {number} index The index in question. - * @return {number} The requested 32-bits as an unsigned number. - */ -goog.math.Integer.prototype.getBitsUnsigned = function(index) { - var val = this.getBits(index); - return val >= 0 ? val : goog.math.Integer.TWO_PWR_32_DBL_ + val; -}; - - -/** @return {number} The sign bit of this number, -1 or 0. */ -goog.math.Integer.prototype.getSign = function() { - return this.sign_; -}; - - -/** @return {boolean} Whether this value is zero. */ -goog.math.Integer.prototype.isZero = function() { - if (this.sign_ != 0) { - return false; - } - for (var i = 0; i < this.bits_.length; i++) { - if (this.bits_[i] != 0) { - return false; - } - } - return true; -}; - - -/** @return {boolean} Whether this value is negative. */ -goog.math.Integer.prototype.isNegative = function() { - return this.sign_ == -1; -}; - - -/** @return {boolean} Whether this value is odd. */ -goog.math.Integer.prototype.isOdd = function() { - return (this.bits_.length == 0) && (this.sign_ == -1) || - (this.bits_.length > 0) && ((this.bits_[0] & 1) != 0); -}; - - -/** - * @param {goog.math.Integer} other Integer to compare against. - * @return {boolean} Whether this Integer equals the other. - */ -goog.math.Integer.prototype.equals = function(other) { - if (this.sign_ != other.sign_) { - return false; - } - var len = Math.max(this.bits_.length, other.bits_.length); - for (var i = 0; i < len; i++) { - if (this.getBits(i) != other.getBits(i)) { - return false; - } - } - return true; -}; - - -/** - * @param {goog.math.Integer} other Integer to compare against. - * @return {boolean} Whether this Integer does not equal the other. - */ -goog.math.Integer.prototype.notEquals = function(other) { - return !this.equals(other); -}; - - -/** - * @param {goog.math.Integer} other Integer to compare against. - * @return {boolean} Whether this Integer is greater than the other. - */ -goog.math.Integer.prototype.greaterThan = function(other) { - return this.compare(other) > 0; -}; - - -/** - * @param {goog.math.Integer} other Integer to compare against. - * @return {boolean} Whether this Integer is greater than or equal to the other. - */ -goog.math.Integer.prototype.greaterThanOrEqual = function(other) { - return this.compare(other) >= 0; -}; - - -/** - * @param {goog.math.Integer} other Integer to compare against. - * @return {boolean} Whether this Integer is less than the other. - */ -goog.math.Integer.prototype.lessThan = function(other) { - return this.compare(other) < 0; -}; - - -/** - * @param {goog.math.Integer} other Integer to compare against. - * @return {boolean} Whether this Integer is less than or equal to the other. - */ -goog.math.Integer.prototype.lessThanOrEqual = function(other) { - return this.compare(other) <= 0; -}; - - -/** - * Compares this Integer with the given one. - * @param {goog.math.Integer} other Integer to compare against. - * @return {number} 0 if they are the same, 1 if the this is greater, and -1 - * if the given one is greater. - */ -goog.math.Integer.prototype.compare = function(other) { - var diff = this.subtract(other); - if (diff.isNegative()) { - return -1; - } else if (diff.isZero()) { - return 0; - } else { - return +1; - } -}; - - -/** - * Returns an integer with only the first numBits bits of this value, sign - * extended from the final bit. - * @param {number} numBits The number of bits by which to shift. - * @return {!goog.math.Integer} The shorted integer value. - */ -goog.math.Integer.prototype.shorten = function(numBits) { - var arr_index = (numBits - 1) >> 5; - var bit_index = (numBits - 1) % 32; - var bits = []; - for (var i = 0; i < arr_index; i++) { - bits[i] = this.getBits(i); - } - var sigBits = bit_index == 31 ? 0xFFFFFFFF : (1 << (bit_index + 1)) - 1; - var val = this.getBits(arr_index) & sigBits; - if (val & (1 << bit_index)) { - val |= 0xFFFFFFFF - sigBits; - bits[arr_index] = val; - return new goog.math.Integer(bits, -1); - } else { - bits[arr_index] = val; - return new goog.math.Integer(bits, 0); - } -}; - - -/** @return {!goog.math.Integer} The negation of this value. */ -goog.math.Integer.prototype.negate = function() { - return this.not().add(goog.math.Integer.ONE); -}; - - -/** - * Returns the sum of this and the given Integer. - * @param {goog.math.Integer} other The Integer to add to this. - * @return {!goog.math.Integer} The Integer result. - */ -goog.math.Integer.prototype.add = function(other) { - var len = Math.max(this.bits_.length, other.bits_.length); - var arr = []; - var carry = 0; - - for (var i = 0; i <= len; i++) { - var a1 = this.getBits(i) >>> 16; - var a0 = this.getBits(i) & 0xFFFF; - - var b1 = other.getBits(i) >>> 16; - var b0 = other.getBits(i) & 0xFFFF; - - var c0 = carry + a0 + b0; - var c1 = (c0 >>> 16) + a1 + b1; - carry = c1 >>> 16; - c0 &= 0xFFFF; - c1 &= 0xFFFF; - arr[i] = (c1 << 16) | c0; - } - return goog.math.Integer.fromBits(arr); -}; - - -/** - * Returns the difference of this and the given Integer. - * @param {goog.math.Integer} other The Integer to subtract from this. - * @return {!goog.math.Integer} The Integer result. - */ -goog.math.Integer.prototype.subtract = function(other) { - return this.add(other.negate()); -}; - - -/** - * Returns the product of this and the given Integer. - * @param {goog.math.Integer} other The Integer to multiply against this. - * @return {!goog.math.Integer} The product of this and the other. - */ -goog.math.Integer.prototype.multiply = function(other) { - if (this.isZero()) { - return goog.math.Integer.ZERO; - } else if (other.isZero()) { - return goog.math.Integer.ZERO; - } - - if (this.isNegative()) { - if (other.isNegative()) { - return this.negate().multiply(other.negate()); - } else { - return this.negate().multiply(other).negate(); - } - } else if (other.isNegative()) { - return this.multiply(other.negate()).negate(); - } - - // If both numbers are small, use float multiplication - if (this.lessThan(goog.math.Integer.TWO_PWR_24_) && - other.lessThan(goog.math.Integer.TWO_PWR_24_)) { - return goog.math.Integer.fromNumber(this.toNumber() * other.toNumber()); - } - - // Fill in an array of 16-bit products. - var len = this.bits_.length + other.bits_.length; - var arr = []; - for (var i = 0; i < 2 * len; i++) { - arr[i] = 0; - } - for (var i = 0; i < this.bits_.length; i++) { - for (var j = 0; j < other.bits_.length; j++) { - var a1 = this.getBits(i) >>> 16; - var a0 = this.getBits(i) & 0xFFFF; - - var b1 = other.getBits(j) >>> 16; - var b0 = other.getBits(j) & 0xFFFF; - - arr[2 * i + 2 * j] += a0 * b0; - goog.math.Integer.carry16_(arr, 2 * i + 2 * j); - arr[2 * i + 2 * j + 1] += a1 * b0; - goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1); - arr[2 * i + 2 * j + 1] += a0 * b1; - goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1); - arr[2 * i + 2 * j + 2] += a1 * b1; - goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 2); - } - } - - // Combine the 16-bit values into 32-bit values. - for (var i = 0; i < len; i++) { - arr[i] = (arr[2 * i + 1] << 16) | arr[2 * i]; - } - for (var i = len; i < 2 * len; i++) { - arr[i] = 0; - } - return new goog.math.Integer(arr, 0); -}; - - -/** - * Carries any overflow from the given index into later entries. - * @param {Array} bits Array of 16-bit values in little-endian order. - * @param {number} index The index in question. - * @private - */ -goog.math.Integer.carry16_ = function(bits, index) { - while ((bits[index] & 0xFFFF) != bits[index]) { - bits[index + 1] += bits[index] >>> 16; - bits[index] &= 0xFFFF; - index++; - } -}; - - -/** - * Returns "this" Integer divided by the given one. Both "this" and the given - * Integer MUST be positive. - * - * This method is only needed for very large numbers (>10^308), - * for which the original division algorithm gets into an infinite - * loop (see https://github.com/google/closure-library/issues/500). - * - * The algorithm has some possible performance enhancements (or - * could be rewritten entirely), it's just an initial solution for - * the issue linked above. - * - * @param {!goog.math.Integer} other The Integer to divide "this" by. - * @return {!goog.math.Integer} "this" value divided by the given one. - * @private - */ -goog.math.Integer.prototype.slowDivide_ = function(other) { - if (this.isNegative() || other.isNegative()) { - throw Error('slowDivide_ only works with positive integers.'); - } - - var twoPower = goog.math.Integer.ONE; - var multiple = other; - - // First we have to figure out what the highest bit of the result - // is, so we increase "twoPower" and "multiple" until "multiple" - // exceeds "this". - while (multiple.lessThanOrEqual(this)) { - twoPower = twoPower.shiftLeft(1); - multiple = multiple.shiftLeft(1); - } - - // Rewind by one power of two, giving us the highest bit of the - // result. - var res = twoPower.shiftRight(1); - var total = multiple.shiftRight(1); - - // Now we starting decreasing "multiple" and "twoPower" to find the - // rest of the bits of the result. - var total2; - multiple = multiple.shiftRight(2); - twoPower = twoPower.shiftRight(2); - while (!multiple.isZero()) { - // whenever we can add "multiple" to the total and not exceed - // "this", that means we've found a 1 bit. Else we've found a 0 - // and don't need to add to the result. - total2 = total.add(multiple); - if (total2.lessThanOrEqual(this)) { - res = res.add(twoPower); - total = total2; - } - multiple = multiple.shiftRight(1); - twoPower = twoPower.shiftRight(1); - } - return res; -}; - - -/** - * Returns this Integer divided by the given one. - * @param {!goog.math.Integer} other The Integer to divide this by. - * @return {!goog.math.Integer} This value divided by the given one. - */ -goog.math.Integer.prototype.divide = function(other) { - if (other.isZero()) { - throw Error('division by zero'); - } else if (this.isZero()) { - return goog.math.Integer.ZERO; - } - - if (this.isNegative()) { - if (other.isNegative()) { - return this.negate().divide(other.negate()); - } else { - return this.negate().divide(other).negate(); - } - } else if (other.isNegative()) { - return this.divide(other.negate()).negate(); - } - - // Have to degrade to slowDivide for Very Large Numbers, because - // they're out of range for the floating-point approximation - // technique used below. - if (this.bits_.length > 30) { - return this.slowDivide_(other); - } - - // Repeat the following until the remainder is less than other: find a - // floating-point that approximates remainder / other *from below*, add this - // into the result, and subtract it from the remainder. It is critical that - // the approximate value is less than or equal to the real value so that the - // remainder never becomes negative. - var res = goog.math.Integer.ZERO; - var rem = this; - while (rem.greaterThanOrEqual(other)) { - // Approximate the result of division. This may be a little greater or - // smaller than the actual value. - var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber())); - - // We will tweak the approximate result by changing it in the 48-th digit or - // the smallest non-fractional digit, whichever is larger. - var log2 = Math.ceil(Math.log(approx) / Math.LN2); - var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48); - - // Decrease the approximation until it is smaller than the remainder. Note - // that if it is too large, the product overflows and is negative. - var approxRes = goog.math.Integer.fromNumber(approx); - var approxRem = approxRes.multiply(other); - while (approxRem.isNegative() || approxRem.greaterThan(rem)) { - approx -= delta; - approxRes = goog.math.Integer.fromNumber(approx); - approxRem = approxRes.multiply(other); - } - - // We know the answer can't be zero... and actually, zero would cause - // infinite recursion since we would make no progress. - if (approxRes.isZero()) { - approxRes = goog.math.Integer.ONE; - } - - res = res.add(approxRes); - rem = rem.subtract(approxRem); - } - return res; -}; - - -/** - * Returns this Integer modulo the given one. - * @param {!goog.math.Integer} other The Integer by which to mod. - * @return {!goog.math.Integer} This value modulo the given one. - */ -goog.math.Integer.prototype.modulo = function(other) { - return this.subtract(this.divide(other).multiply(other)); -}; - - -/** @return {!goog.math.Integer} The bitwise-NOT of this value. */ -goog.math.Integer.prototype.not = function() { - var len = this.bits_.length; - var arr = []; - for (var i = 0; i < len; i++) { - arr[i] = ~this.bits_[i]; - } - return new goog.math.Integer(arr, ~this.sign_); -}; - - -/** - * Returns the bitwise-AND of this Integer and the given one. - * @param {goog.math.Integer} other The Integer to AND with this. - * @return {!goog.math.Integer} The bitwise-AND of this and the other. - */ -goog.math.Integer.prototype.and = function(other) { - var len = Math.max(this.bits_.length, other.bits_.length); - var arr = []; - for (var i = 0; i < len; i++) { - arr[i] = this.getBits(i) & other.getBits(i); - } - return new goog.math.Integer(arr, this.sign_ & other.sign_); -}; - - -/** - * Returns the bitwise-OR of this Integer and the given one. - * @param {goog.math.Integer} other The Integer to OR with this. - * @return {!goog.math.Integer} The bitwise-OR of this and the other. - */ -goog.math.Integer.prototype.or = function(other) { - var len = Math.max(this.bits_.length, other.bits_.length); - var arr = []; - for (var i = 0; i < len; i++) { - arr[i] = this.getBits(i) | other.getBits(i); - } - return new goog.math.Integer(arr, this.sign_ | other.sign_); -}; - - -/** - * Returns the bitwise-XOR of this Integer and the given one. - * @param {goog.math.Integer} other The Integer to XOR with this. - * @return {!goog.math.Integer} The bitwise-XOR of this and the other. - */ -goog.math.Integer.prototype.xor = function(other) { - var len = Math.max(this.bits_.length, other.bits_.length); - var arr = []; - for (var i = 0; i < len; i++) { - arr[i] = this.getBits(i) ^ other.getBits(i); - } - return new goog.math.Integer(arr, this.sign_ ^ other.sign_); -}; - - -/** - * Returns this value with bits shifted to the left by the given amount. - * @param {number} numBits The number of bits by which to shift. - * @return {!goog.math.Integer} This shifted to the left by the given amount. - */ -goog.math.Integer.prototype.shiftLeft = function(numBits) { - var arr_delta = numBits >> 5; - var bit_delta = numBits % 32; - var len = this.bits_.length + arr_delta + (bit_delta > 0 ? 1 : 0); - var arr = []; - for (var i = 0; i < len; i++) { - if (bit_delta > 0) { - arr[i] = (this.getBits(i - arr_delta) << bit_delta) | - (this.getBits(i - arr_delta - 1) >>> (32 - bit_delta)); - } else { - arr[i] = this.getBits(i - arr_delta); - } - } - return new goog.math.Integer(arr, this.sign_); -}; - - -/** - * Returns this value with bits shifted to the right by the given amount. - * @param {number} numBits The number of bits by which to shift. - * @return {!goog.math.Integer} This shifted to the right by the given amount. - */ -goog.math.Integer.prototype.shiftRight = function(numBits) { - var arr_delta = numBits >> 5; - var bit_delta = numBits % 32; - var len = this.bits_.length - arr_delta; - var arr = []; - for (var i = 0; i < len; i++) { - if (bit_delta > 0) { - arr[i] = (this.getBits(i + arr_delta) >>> bit_delta) | - (this.getBits(i + arr_delta + 1) << (32 - bit_delta)); - } else { - arr[i] = this.getBits(i + arr_delta); - } - } - return new goog.math.Integer(arr, this.sign_); -}; -- cgit v1.2.3