// Copyright 2009 The Closure Library Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS-IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @fileoverview Defines a Long class for representing a 64-bit two's-complement * integer value, which faithfully simulates the behavior of a Java "long". This * implementation is derived from LongLib in GWT. * */ goog.provide('goog.math.Long'); goog.require('goog.asserts'); goog.require('goog.reflect'); /** * Constructs a 64-bit two's-complement integer, given its low and high 32-bit * values as *signed* integers. See the from* functions below for more * convenient ways of constructing Longs. * * The internal representation of a long is the two given signed, 32-bit values. * We use 32-bit pieces because these are the size of integers on which * Javascript performs bit-operations. For operations like addition and * multiplication, we split each number into 16-bit pieces, which can easily be * multiplied within Javascript's floating-point representation without overflow * or change in sign. * * In the algorithms below, we frequently reduce the negative case to the * positive case by negating the input(s) and then post-processing the result. * Note that we must ALWAYS check specially whether those values are MIN_VALUE * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as * a positive number, it overflows back into a negative). Not handling this * case would often result in infinite recursion. * * @param {number} low The low (signed) 32 bits of the long. * @param {number} high The high (signed) 32 bits of the long. * @struct * @constructor * @final */ goog.math.Long = function(low, high) { /** * @type {number} * @private */ this.low_ = low | 0; // force into 32 signed bits. /** * @type {number} * @private */ this.high_ = high | 0; // force into 32 signed bits. }; // NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the // from* methods on which they depend. /** * A cache of the Long representations of small integer values. * @type {!Object} * @private */ goog.math.Long.IntCache_ = {}; /** * A cache of the Long representations of common values. * @type {!Object} * @private */ goog.math.Long.valueCache_ = {}; /** * Returns a cached long number representing the given (32-bit) integer value. * @param {number} value The 32-bit integer in question. * @return {!goog.math.Long} The corresponding Long value. * @private */ goog.math.Long.getCachedIntValue_ = function(value) { return goog.reflect.cache(goog.math.Long.IntCache_, value, function(val) { return new goog.math.Long(val, val < 0 ? -1 : 0); }); }; /** * The array of maximum values of a Long in string representation for a given * radix between 2 and 36, inclusive. * @private @const {!Array} */ goog.math.Long.MAX_VALUE_FOR_RADIX_ = [ '', '', // unused '111111111111111111111111111111111111111111111111111111111111111', // base 2 '2021110011022210012102010021220101220221', // base 3 '13333333333333333333333333333333', // base 4 '1104332401304422434310311212', // base 5 '1540241003031030222122211', // base 6 '22341010611245052052300', // base 7 '777777777777777777777', // base 8 '67404283172107811827', // base 9 '9223372036854775807', // base 10 '1728002635214590697', // base 11 '41a792678515120367', // base 12 '10b269549075433c37', // base 13 '4340724c6c71dc7a7', // base 14 '160e2ad3246366807', // base 15 '7fffffffffffffff', // base 16 '33d3d8307b214008', // base 17 '16agh595df825fa7', // base 18 'ba643dci0ffeehh', // base 19 '5cbfjia3fh26ja7', // base 20 '2heiciiie82dh97', // base 21 '1adaibb21dckfa7', // base 22 'i6k448cf4192c2', // base 23 'acd772jnc9l0l7', // base 24 '64ie1focnn5g77', // base 25 '3igoecjbmca687', // base 26 '27c48l5b37oaop', // base 27 '1bk39f3ah3dmq7', // base 28 'q1se8f0m04isb', // base 29 'hajppbc1fc207', // base 30 'bm03i95hia437', // base 31 '7vvvvvvvvvvvv', // base 32 '5hg4ck9jd4u37', // base 33 '3tdtk1v8j6tpp', // base 34 '2pijmikexrxp7', // base 35 '1y2p0ij32e8e7' // base 36 ]; /** * The array of minimum values of a Long in string representation for a given * radix between 2 and 36, inclusive. * @private @const {!Array} */ goog.math.Long.MIN_VALUE_FOR_RADIX_ = [ '', '', // unused '-1000000000000000000000000000000000000000000000000000000000000000', // base 2 '-2021110011022210012102010021220101220222', // base 3 '-20000000000000000000000000000000', // base 4 '-1104332401304422434310311213', // base 5 '-1540241003031030222122212', // base 6 '-22341010611245052052301', // base 7 '-1000000000000000000000', // base 8 '-67404283172107811828', // base 9 '-9223372036854775808', // base 10 '-1728002635214590698', // base 11 '-41a792678515120368', // base 12 '-10b269549075433c38', // base 13 '-4340724c6c71dc7a8', // base 14 '-160e2ad3246366808', // base 15 '-8000000000000000', // base 16 '-33d3d8307b214009', // base 17 '-16agh595df825fa8', // base 18 '-ba643dci0ffeehi', // base 19 '-5cbfjia3fh26ja8', // base 20 '-2heiciiie82dh98', // base 21 '-1adaibb21dckfa8', // base 22 '-i6k448cf4192c3', // base 23 '-acd772jnc9l0l8', // base 24 '-64ie1focnn5g78', // base 25 '-3igoecjbmca688', // base 26 '-27c48l5b37oaoq', // base 27 '-1bk39f3ah3dmq8', // base 28 '-q1se8f0m04isc', // base 29 '-hajppbc1fc208', // base 30 '-bm03i95hia438', // base 31 '-8000000000000', // base 32 '-5hg4ck9jd4u38', // base 33 '-3tdtk1v8j6tpq', // base 34 '-2pijmikexrxp8', // base 35 '-1y2p0ij32e8e8' // base 36 ]; /** * Returns a Long representing the given (32-bit) integer value. * @param {number} value The 32-bit integer in question. * @return {!goog.math.Long} The corresponding Long value. */ goog.math.Long.fromInt = function(value) { var intValue = value | 0; goog.asserts.assert(value === intValue, 'value should be a 32-bit integer'); if (-128 <= intValue && intValue < 128) { return goog.math.Long.getCachedIntValue_(intValue); } else { return new goog.math.Long(intValue, intValue < 0 ? -1 : 0); } }; /** * Returns a Long representing the given value. * NaN will be returned as zero. Infinity is converted to max value and * -Infinity to min value. * @param {number} value The number in question. * @return {!goog.math.Long} The corresponding Long value. */ goog.math.Long.fromNumber = function(value) { if (isNaN(value)) { return goog.math.Long.getZero(); } else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) { return goog.math.Long.getMinValue(); } else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) { return goog.math.Long.getMaxValue(); } else if (value < 0) { return goog.math.Long.fromNumber(-value).negate(); } else { return new goog.math.Long( (value % goog.math.Long.TWO_PWR_32_DBL_) | 0, (value / goog.math.Long.TWO_PWR_32_DBL_) | 0); } }; /** * Returns a Long representing the 64-bit integer that comes by concatenating * the given high and low bits. Each is assumed to use 32 bits. * @param {number} lowBits The low 32-bits. * @param {number} highBits The high 32-bits. * @return {!goog.math.Long} The corresponding Long value. */ goog.math.Long.fromBits = function(lowBits, highBits) { return new goog.math.Long(lowBits, highBits); }; /** * Returns a Long representation of the given string, written using the given * radix. * @param {string} str The textual representation of the Long. * @param {number=} opt_radix The radix in which the text is written. * @return {!goog.math.Long} The corresponding Long value. */ goog.math.Long.fromString = function(str, opt_radix) { if (str.length == 0) { throw Error('number format error: empty string'); } var radix = opt_radix || 10; if (radix < 2 || 36 < radix) { throw Error('radix out of range: ' + radix); } if (str.charAt(0) == '-') { return goog.math.Long.fromString(str.substring(1), radix).negate(); } else if (str.indexOf('-') >= 0) { throw Error('number format error: interior "-" character: ' + str); } // Do several (8) digits each time through the loop, so as to // minimize the calls to the very expensive emulated div. var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8)); var result = goog.math.Long.getZero(); for (var i = 0; i < str.length; i += 8) { var size = Math.min(8, str.length - i); var value = parseInt(str.substring(i, i + size), radix); if (size < 8) { var power = goog.math.Long.fromNumber(Math.pow(radix, size)); result = result.multiply(power).add(goog.math.Long.fromNumber(value)); } else { result = result.multiply(radixToPower); result = result.add(goog.math.Long.fromNumber(value)); } } return result; }; /** * Returns the boolean value of whether the input string is within a Long's * range. Assumes an input string containing only numeric characters with an * optional preceding '-'. * @param {string} str The textual representation of the Long. * @param {number=} opt_radix The radix in which the text is written. * @return {boolean} Whether the string is within the range of a Long. */ goog.math.Long.isStringInRange = function(str, opt_radix) { var radix = opt_radix || 10; if (radix < 2 || 36 < radix) { throw Error('radix out of range: ' + radix); } var extremeValue = (str.charAt(0) == '-') ? goog.math.Long.MIN_VALUE_FOR_RADIX_[radix] : goog.math.Long.MAX_VALUE_FOR_RADIX_[radix]; if (str.length < extremeValue.length) { return true; } else if (str.length == extremeValue.length && str <= extremeValue) { return true; } else { return false; } }; // NOTE: the compiler should inline these constant values below and then remove // these variables, so there should be no runtime penalty for these. /** * Number used repeated below in calculations. This must appear before the * first call to any from* function below. * @type {number} * @private */ goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16; /** * @type {number} * @private */ goog.math.Long.TWO_PWR_32_DBL_ = goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_; /** * @type {number} * @private */ goog.math.Long.TWO_PWR_64_DBL_ = goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_; /** * @type {number} * @private */ goog.math.Long.TWO_PWR_63_DBL_ = goog.math.Long.TWO_PWR_64_DBL_ / 2; /** * @return {!goog.math.Long} * @public */ goog.math.Long.getZero = function() { return goog.math.Long.getCachedIntValue_(0); }; /** * @return {!goog.math.Long} * @public */ goog.math.Long.getOne = function() { return goog.math.Long.getCachedIntValue_(1); }; /** * @return {!goog.math.Long} * @public */ goog.math.Long.getNegOne = function() { return goog.math.Long.getCachedIntValue_(-1); }; /** * @return {!goog.math.Long} * @public */ goog.math.Long.getMaxValue = function() { return goog.reflect.cache( goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MAX_VALUE, function() { return goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0); }); }; /** * @return {!goog.math.Long} * @public */ goog.math.Long.getMinValue = function() { return goog.reflect.cache( goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MIN_VALUE, function() { return goog.math.Long.fromBits(0, 0x80000000 | 0); }); }; /** * @return {!goog.math.Long} * @public */ goog.math.Long.getTwoPwr24 = function() { return goog.reflect.cache( goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.TWO_PWR_24, function() { return goog.math.Long.fromInt(1 << 24); }); }; /** @return {number} The value, assuming it is a 32-bit integer. */ goog.math.Long.prototype.toInt = function() { return this.low_; }; /** @return {number} The closest floating-point representation to this value. */ goog.math.Long.prototype.toNumber = function() { return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ + this.getLowBitsUnsigned(); }; /** * @param {number=} opt_radix The radix in which the text should be written. * @return {string} The textual representation of this value. * @override */ goog.math.Long.prototype.toString = function(opt_radix) { var radix = opt_radix || 10; if (radix < 2 || 36 < radix) { throw Error('radix out of range: ' + radix); } if (this.isZero()) { return '0'; } if (this.isNegative()) { if (this.equals(goog.math.Long.getMinValue())) { // We need to change the Long value before it can be negated, so we remove // the bottom-most digit in this base and then recurse to do the rest. var radixLong = goog.math.Long.fromNumber(radix); var div = this.div(radixLong); var rem = div.multiply(radixLong).subtract(this); return div.toString(radix) + rem.toInt().toString(radix); } else { return '-' + this.negate().toString(radix); } } // Do several (6) digits each time through the loop, so as to // minimize the calls to the very expensive emulated div. var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6)); var rem = this; var result = ''; while (true) { var remDiv = rem.div(radixToPower); // The right shifting fixes negative values in the case when // intval >= 2^31; for more details see // https://github.com/google/closure-library/pull/498 var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0; var digits = intval.toString(radix); rem = remDiv; if (rem.isZero()) { return digits + result; } else { while (digits.length < 6) { digits = '0' + digits; } result = '' + digits + result; } } }; /** @return {number} The high 32-bits as a signed value. */ goog.math.Long.prototype.getHighBits = function() { return this.high_; }; /** @return {number} The low 32-bits as a signed value. */ goog.math.Long.prototype.getLowBits = function() { return this.low_; }; /** @return {number} The low 32-bits as an unsigned value. */ goog.math.Long.prototype.getLowBitsUnsigned = function() { return (this.low_ >= 0) ? this.low_ : goog.math.Long.TWO_PWR_32_DBL_ + this.low_; }; /** * @return {number} Returns the number of bits needed to represent the absolute * value of this Long. */ goog.math.Long.prototype.getNumBitsAbs = function() { if (this.isNegative()) { if (this.equals(goog.math.Long.getMinValue())) { return 64; } else { return this.negate().getNumBitsAbs(); } } else { var val = this.high_ != 0 ? this.high_ : this.low_; for (var bit = 31; bit > 0; bit--) { if ((val & (1 << bit)) != 0) { break; } } return this.high_ != 0 ? bit + 33 : bit + 1; } }; /** @return {boolean} Whether this value is zero. */ goog.math.Long.prototype.isZero = function() { return this.high_ == 0 && this.low_ == 0; }; /** @return {boolean} Whether this value is negative. */ goog.math.Long.prototype.isNegative = function() { return this.high_ < 0; }; /** @return {boolean} Whether this value is odd. */ goog.math.Long.prototype.isOdd = function() { return (this.low_ & 1) == 1; }; /** * @param {goog.math.Long} other Long to compare against. * @return {boolean} Whether this Long equals the other. */ goog.math.Long.prototype.equals = function(other) { return (this.high_ == other.high_) && (this.low_ == other.low_); }; /** * @param {goog.math.Long} other Long to compare against. * @return {boolean} Whether this Long does not equal the other. */ goog.math.Long.prototype.notEquals = function(other) { return (this.high_ != other.high_) || (this.low_ != other.low_); }; /** * @param {goog.math.Long} other Long to compare against. * @return {boolean} Whether this Long is less than the other. */ goog.math.Long.prototype.lessThan = function(other) { return this.compare(other) < 0; }; /** * @param {goog.math.Long} other Long to compare against. * @return {boolean} Whether this Long is less than or equal to the other. */ goog.math.Long.prototype.lessThanOrEqual = function(other) { return this.compare(other) <= 0; }; /** * @param {goog.math.Long} other Long to compare against. * @return {boolean} Whether this Long is greater than the other. */ goog.math.Long.prototype.greaterThan = function(other) { return this.compare(other) > 0; }; /** * @param {goog.math.Long} other Long to compare against. * @return {boolean} Whether this Long is greater than or equal to the other. */ goog.math.Long.prototype.greaterThanOrEqual = function(other) { return this.compare(other) >= 0; }; /** * Compares this Long with the given one. * @param {goog.math.Long} other Long to compare against. * @return {number} 0 if they are the same, 1 if the this is greater, and -1 * if the given one is greater. */ goog.math.Long.prototype.compare = function(other) { if (this.equals(other)) { return 0; } var thisNeg = this.isNegative(); var otherNeg = other.isNegative(); if (thisNeg && !otherNeg) { return -1; } if (!thisNeg && otherNeg) { return 1; } // at this point, the signs are the same, so subtraction will not overflow if (this.subtract(other).isNegative()) { return -1; } else { return 1; } }; /** @return {!goog.math.Long} The negation of this value. */ goog.math.Long.prototype.negate = function() { if (this.equals(goog.math.Long.getMinValue())) { return goog.math.Long.getMinValue(); } else { return this.not().add(goog.math.Long.getOne()); } }; /** * Returns the sum of this and the given Long. * @param {goog.math.Long} other Long to add to this one. * @return {!goog.math.Long} The sum of this and the given Long. */ goog.math.Long.prototype.add = function(other) { // Divide each number into 4 chunks of 16 bits, and then sum the chunks. var a48 = this.high_ >>> 16; var a32 = this.high_ & 0xFFFF; var a16 = this.low_ >>> 16; var a00 = this.low_ & 0xFFFF; var b48 = other.high_ >>> 16; var b32 = other.high_ & 0xFFFF; var b16 = other.low_ >>> 16; var b00 = other.low_ & 0xFFFF; var c48 = 0, c32 = 0, c16 = 0, c00 = 0; c00 += a00 + b00; c16 += c00 >>> 16; c00 &= 0xFFFF; c16 += a16 + b16; c32 += c16 >>> 16; c16 &= 0xFFFF; c32 += a32 + b32; c48 += c32 >>> 16; c32 &= 0xFFFF; c48 += a48 + b48; c48 &= 0xFFFF; return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); }; /** * Returns the difference of this and the given Long. * @param {goog.math.Long} other Long to subtract from this. * @return {!goog.math.Long} The difference of this and the given Long. */ goog.math.Long.prototype.subtract = function(other) { return this.add(other.negate()); }; /** * Returns the product of this and the given long. * @param {goog.math.Long} other Long to multiply with this. * @return {!goog.math.Long} The product of this and the other. */ goog.math.Long.prototype.multiply = function(other) { if (this.isZero()) { return goog.math.Long.getZero(); } else if (other.isZero()) { return goog.math.Long.getZero(); } if (this.equals(goog.math.Long.getMinValue())) { return other.isOdd() ? goog.math.Long.getMinValue() : goog.math.Long.getZero(); } else if (other.equals(goog.math.Long.getMinValue())) { return this.isOdd() ? goog.math.Long.getMinValue() : goog.math.Long.getZero(); } if (this.isNegative()) { if (other.isNegative()) { return this.negate().multiply(other.negate()); } else { return this.negate().multiply(other).negate(); } } else if (other.isNegative()) { return this.multiply(other.negate()).negate(); } // If both longs are small, use float multiplication if (this.lessThan(goog.math.Long.getTwoPwr24()) && other.lessThan(goog.math.Long.getTwoPwr24())) { return goog.math.Long.fromNumber(this.toNumber() * other.toNumber()); } // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products. // We can skip products that would overflow. var a48 = this.high_ >>> 16; var a32 = this.high_ & 0xFFFF; var a16 = this.low_ >>> 16; var a00 = this.low_ & 0xFFFF; var b48 = other.high_ >>> 16; var b32 = other.high_ & 0xFFFF; var b16 = other.low_ >>> 16; var b00 = other.low_ & 0xFFFF; var c48 = 0, c32 = 0, c16 = 0, c00 = 0; c00 += a00 * b00; c16 += c00 >>> 16; c00 &= 0xFFFF; c16 += a16 * b00; c32 += c16 >>> 16; c16 &= 0xFFFF; c16 += a00 * b16; c32 += c16 >>> 16; c16 &= 0xFFFF; c32 += a32 * b00; c48 += c32 >>> 16; c32 &= 0xFFFF; c32 += a16 * b16; c48 += c32 >>> 16; c32 &= 0xFFFF; c32 += a00 * b32; c48 += c32 >>> 16; c32 &= 0xFFFF; c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48; c48 &= 0xFFFF; return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); }; /** * Returns this Long divided by the given one. * @param {goog.math.Long} other Long by which to divide. * @return {!goog.math.Long} This Long divided by the given one. */ goog.math.Long.prototype.div = function(other) { if (other.isZero()) { throw Error('division by zero'); } else if (this.isZero()) { return goog.math.Long.getZero(); } if (this.equals(goog.math.Long.getMinValue())) { if (other.equals(goog.math.Long.getOne()) || other.equals(goog.math.Long.getNegOne())) { return goog.math.Long.getMinValue(); // recall -MIN_VALUE == MIN_VALUE } else if (other.equals(goog.math.Long.getMinValue())) { return goog.math.Long.getOne(); } else { // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|. var halfThis = this.shiftRight(1); var approx = halfThis.div(other).shiftLeft(1); if (approx.equals(goog.math.Long.getZero())) { return other.isNegative() ? goog.math.Long.getOne() : goog.math.Long.getNegOne(); } else { var rem = this.subtract(other.multiply(approx)); var result = approx.add(rem.div(other)); return result; } } } else if (other.equals(goog.math.Long.getMinValue())) { return goog.math.Long.getZero(); } if (this.isNegative()) { if (other.isNegative()) { return this.negate().div(other.negate()); } else { return this.negate().div(other).negate(); } } else if (other.isNegative()) { return this.div(other.negate()).negate(); } // Repeat the following until the remainder is less than other: find a // floating-point that approximates remainder / other *from below*, add this // into the result, and subtract it from the remainder. It is critical that // the approximate value is less than or equal to the real value so that the // remainder never becomes negative. var res = goog.math.Long.getZero(); var rem = this; while (rem.greaterThanOrEqual(other)) { // Approximate the result of division. This may be a little greater or // smaller than the actual value. var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber())); // We will tweak the approximate result by changing it in the 48-th digit or // the smallest non-fractional digit, whichever is larger. var log2 = Math.ceil(Math.log(approx) / Math.LN2); var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48); // Decrease the approximation until it is smaller than the remainder. Note // that if it is too large, the product overflows and is negative. var approxRes = goog.math.Long.fromNumber(approx); var approxRem = approxRes.multiply(other); while (approxRem.isNegative() || approxRem.greaterThan(rem)) { approx -= delta; approxRes = goog.math.Long.fromNumber(approx); approxRem = approxRes.multiply(other); } // We know the answer can't be zero... and actually, zero would cause // infinite recursion since we would make no progress. if (approxRes.isZero()) { approxRes = goog.math.Long.getOne(); } res = res.add(approxRes); rem = rem.subtract(approxRem); } return res; }; /** * Returns this Long modulo the given one. * @param {goog.math.Long} other Long by which to mod. * @return {!goog.math.Long} This Long modulo the given one. */ goog.math.Long.prototype.modulo = function(other) { return this.subtract(this.div(other).multiply(other)); }; /** @return {!goog.math.Long} The bitwise-NOT of this value. */ goog.math.Long.prototype.not = function() { return goog.math.Long.fromBits(~this.low_, ~this.high_); }; /** * Returns the bitwise-AND of this Long and the given one. * @param {goog.math.Long} other The Long with which to AND. * @return {!goog.math.Long} The bitwise-AND of this and the other. */ goog.math.Long.prototype.and = function(other) { return goog.math.Long.fromBits( this.low_ & other.low_, this.high_ & other.high_); }; /** * Returns the bitwise-OR of this Long and the given one. * @param {goog.math.Long} other The Long with which to OR. * @return {!goog.math.Long} The bitwise-OR of this and the other. */ goog.math.Long.prototype.or = function(other) { return goog.math.Long.fromBits( this.low_ | other.low_, this.high_ | other.high_); }; /** * Returns the bitwise-XOR of this Long and the given one. * @param {goog.math.Long} other The Long with which to XOR. * @return {!goog.math.Long} The bitwise-XOR of this and the other. */ goog.math.Long.prototype.xor = function(other) { return goog.math.Long.fromBits( this.low_ ^ other.low_, this.high_ ^ other.high_); }; /** * Returns this Long with bits shifted to the left by the given amount. * @param {number} numBits The number of bits by which to shift. * @return {!goog.math.Long} This shifted to the left by the given amount. */ goog.math.Long.prototype.shiftLeft = function(numBits) { numBits &= 63; if (numBits == 0) { return this; } else { var low = this.low_; if (numBits < 32) { var high = this.high_; return goog.math.Long.fromBits( low << numBits, (high << numBits) | (low >>> (32 - numBits))); } else { return goog.math.Long.fromBits(0, low << (numBits - 32)); } } }; /** * Returns this Long with bits shifted to the right by the given amount. * The new leading bits match the current sign bit. * @param {number} numBits The number of bits by which to shift. * @return {!goog.math.Long} This shifted to the right by the given amount. */ goog.math.Long.prototype.shiftRight = function(numBits) { numBits &= 63; if (numBits == 0) { return this; } else { var high = this.high_; if (numBits < 32) { var low = this.low_; return goog.math.Long.fromBits( (low >>> numBits) | (high << (32 - numBits)), high >> numBits); } else { return goog.math.Long.fromBits( high >> (numBits - 32), high >= 0 ? 0 : -1); } } }; /** * Returns this Long with bits shifted to the right by the given amount, with * zeros placed into the new leading bits. * @param {number} numBits The number of bits by which to shift. * @return {!goog.math.Long} This shifted to the right by the given amount, with * zeros placed into the new leading bits. */ goog.math.Long.prototype.shiftRightUnsigned = function(numBits) { numBits &= 63; if (numBits == 0) { return this; } else { var high = this.high_; if (numBits < 32) { var low = this.low_; return goog.math.Long.fromBits( (low >>> numBits) | (high << (32 - numBits)), high >>> numBits); } else if (numBits == 32) { return goog.math.Long.fromBits(high, 0); } else { return goog.math.Long.fromBits(high >>> (numBits - 32), 0); } } }; /** * @enum {number} Ids of commonly requested Long instances. * @private */ goog.math.Long.ValueCacheId_ = { MAX_VALUE: 1, MIN_VALUE: 2, TWO_PWR_24: 6 };