summaryrefslogtreecommitdiff
path: root/assets/viz/1/goog/math
diff options
context:
space:
mode:
Diffstat (limited to 'assets/viz/1/goog/math')
-rw-r--r--assets/viz/1/goog/math/coordinate.js268
-rw-r--r--assets/viz/1/goog/math/integer.js807
-rw-r--r--assets/viz/1/goog/math/long.js843
-rw-r--r--assets/viz/1/goog/math/math.js447
-rw-r--r--assets/viz/1/goog/math/size.js227
5 files changed, 0 insertions, 2592 deletions
diff --git a/assets/viz/1/goog/math/coordinate.js b/assets/viz/1/goog/math/coordinate.js
deleted file mode 100644
index a08b9cb..0000000
--- a/assets/viz/1/goog/math/coordinate.js
+++ /dev/null
@@ -1,268 +0,0 @@
-// Copyright 2006 The Closure Library Authors. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS-IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/**
- * @fileoverview A utility class for representing two-dimensional positions.
- */
-
-
-goog.provide('goog.math.Coordinate');
-
-goog.require('goog.math');
-
-
-
-/**
- * Class for representing coordinates and positions.
- * @param {number=} opt_x Left, defaults to 0.
- * @param {number=} opt_y Top, defaults to 0.
- * @struct
- * @constructor
- */
-goog.math.Coordinate = function(opt_x, opt_y) {
- /**
- * X-value
- * @type {number}
- */
- this.x = goog.isDef(opt_x) ? opt_x : 0;
-
- /**
- * Y-value
- * @type {number}
- */
- this.y = goog.isDef(opt_y) ? opt_y : 0;
-};
-
-
-/**
- * Returns a new copy of the coordinate.
- * @return {!goog.math.Coordinate} A clone of this coordinate.
- */
-goog.math.Coordinate.prototype.clone = function() {
- return new goog.math.Coordinate(this.x, this.y);
-};
-
-
-if (goog.DEBUG) {
- /**
- * Returns a nice string representing the coordinate.
- * @return {string} In the form (50, 73).
- * @override
- */
- goog.math.Coordinate.prototype.toString = function() {
- return '(' + this.x + ', ' + this.y + ')';
- };
-}
-
-
-/**
- * Compares coordinates for equality.
- * @param {goog.math.Coordinate} a A Coordinate.
- * @param {goog.math.Coordinate} b A Coordinate.
- * @return {boolean} True iff the coordinates are equal, or if both are null.
- */
-goog.math.Coordinate.equals = function(a, b) {
- if (a == b) {
- return true;
- }
- if (!a || !b) {
- return false;
- }
- return a.x == b.x && a.y == b.y;
-};
-
-
-/**
- * Returns the distance between two coordinates.
- * @param {!goog.math.Coordinate} a A Coordinate.
- * @param {!goog.math.Coordinate} b A Coordinate.
- * @return {number} The distance between {@code a} and {@code b}.
- */
-goog.math.Coordinate.distance = function(a, b) {
- var dx = a.x - b.x;
- var dy = a.y - b.y;
- return Math.sqrt(dx * dx + dy * dy);
-};
-
-
-/**
- * Returns the magnitude of a coordinate.
- * @param {!goog.math.Coordinate} a A Coordinate.
- * @return {number} The distance between the origin and {@code a}.
- */
-goog.math.Coordinate.magnitude = function(a) {
- return Math.sqrt(a.x * a.x + a.y * a.y);
-};
-
-
-/**
- * Returns the angle from the origin to a coordinate.
- * @param {!goog.math.Coordinate} a A Coordinate.
- * @return {number} The angle, in degrees, clockwise from the positive X
- * axis to {@code a}.
- */
-goog.math.Coordinate.azimuth = function(a) {
- return goog.math.angle(0, 0, a.x, a.y);
-};
-
-
-/**
- * Returns the squared distance between two coordinates. Squared distances can
- * be used for comparisons when the actual value is not required.
- *
- * Performance note: eliminating the square root is an optimization often used
- * in lower-level languages, but the speed difference is not nearly as
- * pronounced in JavaScript (only a few percent.)
- *
- * @param {!goog.math.Coordinate} a A Coordinate.
- * @param {!goog.math.Coordinate} b A Coordinate.
- * @return {number} The squared distance between {@code a} and {@code b}.
- */
-goog.math.Coordinate.squaredDistance = function(a, b) {
- var dx = a.x - b.x;
- var dy = a.y - b.y;
- return dx * dx + dy * dy;
-};
-
-
-/**
- * Returns the difference between two coordinates as a new
- * goog.math.Coordinate.
- * @param {!goog.math.Coordinate} a A Coordinate.
- * @param {!goog.math.Coordinate} b A Coordinate.
- * @return {!goog.math.Coordinate} A Coordinate representing the difference
- * between {@code a} and {@code b}.
- */
-goog.math.Coordinate.difference = function(a, b) {
- return new goog.math.Coordinate(a.x - b.x, a.y - b.y);
-};
-
-
-/**
- * Returns the sum of two coordinates as a new goog.math.Coordinate.
- * @param {!goog.math.Coordinate} a A Coordinate.
- * @param {!goog.math.Coordinate} b A Coordinate.
- * @return {!goog.math.Coordinate} A Coordinate representing the sum of the two
- * coordinates.
- */
-goog.math.Coordinate.sum = function(a, b) {
- return new goog.math.Coordinate(a.x + b.x, a.y + b.y);
-};
-
-
-/**
- * Rounds the x and y fields to the next larger integer values.
- * @return {!goog.math.Coordinate} This coordinate with ceil'd fields.
- */
-goog.math.Coordinate.prototype.ceil = function() {
- this.x = Math.ceil(this.x);
- this.y = Math.ceil(this.y);
- return this;
-};
-
-
-/**
- * Rounds the x and y fields to the next smaller integer values.
- * @return {!goog.math.Coordinate} This coordinate with floored fields.
- */
-goog.math.Coordinate.prototype.floor = function() {
- this.x = Math.floor(this.x);
- this.y = Math.floor(this.y);
- return this;
-};
-
-
-/**
- * Rounds the x and y fields to the nearest integer values.
- * @return {!goog.math.Coordinate} This coordinate with rounded fields.
- */
-goog.math.Coordinate.prototype.round = function() {
- this.x = Math.round(this.x);
- this.y = Math.round(this.y);
- return this;
-};
-
-
-/**
- * Translates this box by the given offsets. If a {@code goog.math.Coordinate}
- * is given, then the x and y values are translated by the coordinate's x and y.
- * Otherwise, x and y are translated by {@code tx} and {@code opt_ty}
- * respectively.
- * @param {number|goog.math.Coordinate} tx The value to translate x by or the
- * the coordinate to translate this coordinate by.
- * @param {number=} opt_ty The value to translate y by.
- * @return {!goog.math.Coordinate} This coordinate after translating.
- */
-goog.math.Coordinate.prototype.translate = function(tx, opt_ty) {
- if (tx instanceof goog.math.Coordinate) {
- this.x += tx.x;
- this.y += tx.y;
- } else {
- this.x += Number(tx);
- if (goog.isNumber(opt_ty)) {
- this.y += opt_ty;
- }
- }
- return this;
-};
-
-
-/**
- * Scales this coordinate by the given scale factors. The x and y values are
- * scaled by {@code sx} and {@code opt_sy} respectively. If {@code opt_sy}
- * is not given, then {@code sx} is used for both x and y.
- * @param {number} sx The scale factor to use for the x dimension.
- * @param {number=} opt_sy The scale factor to use for the y dimension.
- * @return {!goog.math.Coordinate} This coordinate after scaling.
- */
-goog.math.Coordinate.prototype.scale = function(sx, opt_sy) {
- var sy = goog.isNumber(opt_sy) ? opt_sy : sx;
- this.x *= sx;
- this.y *= sy;
- return this;
-};
-
-
-/**
- * Rotates this coordinate clockwise about the origin (or, optionally, the given
- * center) by the given angle, in radians.
- * @param {number} radians The angle by which to rotate this coordinate
- * clockwise about the given center, in radians.
- * @param {!goog.math.Coordinate=} opt_center The center of rotation. Defaults
- * to (0, 0) if not given.
- */
-goog.math.Coordinate.prototype.rotateRadians = function(radians, opt_center) {
- var center = opt_center || new goog.math.Coordinate(0, 0);
-
- var x = this.x;
- var y = this.y;
- var cos = Math.cos(radians);
- var sin = Math.sin(radians);
-
- this.x = (x - center.x) * cos - (y - center.y) * sin + center.x;
- this.y = (x - center.x) * sin + (y - center.y) * cos + center.y;
-};
-
-
-/**
- * Rotates this coordinate clockwise about the origin (or, optionally, the given
- * center) by the given angle, in degrees.
- * @param {number} degrees The angle by which to rotate this coordinate
- * clockwise about the given center, in degrees.
- * @param {!goog.math.Coordinate=} opt_center The center of rotation. Defaults
- * to (0, 0) if not given.
- */
-goog.math.Coordinate.prototype.rotateDegrees = function(degrees, opt_center) {
- this.rotateRadians(goog.math.toRadians(degrees), opt_center);
-};
diff --git a/assets/viz/1/goog/math/integer.js b/assets/viz/1/goog/math/integer.js
deleted file mode 100644
index 11b6a95..0000000
--- a/assets/viz/1/goog/math/integer.js
+++ /dev/null
@@ -1,807 +0,0 @@
-// Copyright 2009 The Closure Library Authors. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS-IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/**
- * @fileoverview Defines an Integer class for representing (potentially)
- * infinite length two's-complement integer values.
- *
- * For the specific case of 64-bit integers, use goog.math.Long, which is more
- * efficient.
- *
- */
-
-goog.provide('goog.math.Integer');
-
-
-
-/**
- * Constructs a two's-complement integer an array containing bits of the
- * integer in 32-bit (signed) pieces, given in little-endian order (i.e.,
- * lowest-order bits in the first piece), and the sign of -1 or 0.
- *
- * See the from* functions below for other convenient ways of constructing
- * Integers.
- *
- * The internal representation of an integer is an array of 32-bit signed
- * pieces, along with a sign (0 or -1) that indicates the contents of all the
- * other 32-bit pieces out to infinity. We use 32-bit pieces because these are
- * the size of integers on which Javascript performs bit-operations. For
- * operations like addition and multiplication, we split each number into 16-bit
- * pieces, which can easily be multiplied within Javascript's floating-point
- * representation without overflow or change in sign.
- *
- * @struct
- * @constructor
- * @param {Array<number>} bits Array containing the bits of the number.
- * @param {number} sign The sign of the number: -1 for negative and 0 positive.
- * @final
- */
-goog.math.Integer = function(bits, sign) {
- /**
- * @type {!Array<number>}
- * @private
- */
- this.bits_ = [];
-
- /**
- * @type {number}
- * @private
- */
- this.sign_ = sign;
-
- // Copy the 32-bit signed integer values passed in. We prune out those at the
- // top that equal the sign since they are redundant.
- var top = true;
- for (var i = bits.length - 1; i >= 0; i--) {
- var val = bits[i] | 0;
- if (!top || val != sign) {
- this.bits_[i] = val;
- top = false;
- }
- }
-};
-
-
-// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
-// from* methods on which they depend.
-
-
-/**
- * A cache of the Integer representations of small integer values.
- * @type {!Object}
- * @private
- */
-goog.math.Integer.IntCache_ = {};
-
-
-/**
- * Returns an Integer representing the given (32-bit) integer value.
- * @param {number} value A 32-bit integer value.
- * @return {!goog.math.Integer} The corresponding Integer value.
- */
-goog.math.Integer.fromInt = function(value) {
- if (-128 <= value && value < 128) {
- var cachedObj = goog.math.Integer.IntCache_[value];
- if (cachedObj) {
- return cachedObj;
- }
- }
-
- var obj = new goog.math.Integer([value | 0], value < 0 ? -1 : 0);
- if (-128 <= value && value < 128) {
- goog.math.Integer.IntCache_[value] = obj;
- }
- return obj;
-};
-
-
-/**
- * Returns an Integer representing the given value, provided that it is a finite
- * number. Otherwise, zero is returned.
- * @param {number} value The value in question.
- * @return {!goog.math.Integer} The corresponding Integer value.
- */
-goog.math.Integer.fromNumber = function(value) {
- if (isNaN(value) || !isFinite(value)) {
- return goog.math.Integer.ZERO;
- } else if (value < 0) {
- return goog.math.Integer.fromNumber(-value).negate();
- } else {
- var bits = [];
- var pow = 1;
- for (var i = 0; value >= pow; i++) {
- bits[i] = (value / pow) | 0;
- pow *= goog.math.Integer.TWO_PWR_32_DBL_;
- }
- return new goog.math.Integer(bits, 0);
- }
-};
-
-
-/**
- * Returns a Integer representing the value that comes by concatenating the
- * given entries, each is assumed to be 32 signed bits, given in little-endian
- * order (lowest order bits in the lowest index), and sign-extending the highest
- * order 32-bit value.
- * @param {Array<number>} bits The bits of the number, in 32-bit signed pieces,
- * in little-endian order.
- * @return {!goog.math.Integer} The corresponding Integer value.
- */
-goog.math.Integer.fromBits = function(bits) {
- var high = bits[bits.length - 1];
- return new goog.math.Integer(bits, high & (1 << 31) ? -1 : 0);
-};
-
-
-/**
- * Returns an Integer representation of the given string, written using the
- * given radix.
- * @param {string} str The textual representation of the Integer.
- * @param {number=} opt_radix The radix in which the text is written.
- * @return {!goog.math.Integer} The corresponding Integer value.
- */
-goog.math.Integer.fromString = function(str, opt_radix) {
- if (str.length == 0) {
- throw Error('number format error: empty string');
- }
-
- var radix = opt_radix || 10;
- if (radix < 2 || 36 < radix) {
- throw Error('radix out of range: ' + radix);
- }
-
- if (str.charAt(0) == '-') {
- return goog.math.Integer.fromString(str.substring(1), radix).negate();
- } else if (str.indexOf('-') >= 0) {
- throw Error('number format error: interior "-" character');
- }
-
- // Do several (8) digits each time through the loop, so as to
- // minimize the calls to the very expensive emulated div.
- var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 8));
-
- var result = goog.math.Integer.ZERO;
- for (var i = 0; i < str.length; i += 8) {
- var size = Math.min(8, str.length - i);
- var value = parseInt(str.substring(i, i + size), radix);
- if (size < 8) {
- var power = goog.math.Integer.fromNumber(Math.pow(radix, size));
- result = result.multiply(power).add(goog.math.Integer.fromNumber(value));
- } else {
- result = result.multiply(radixToPower);
- result = result.add(goog.math.Integer.fromNumber(value));
- }
- }
- return result;
-};
-
-
-/**
- * A number used repeatedly in calculations. This must appear before the first
- * call to the from* functions below.
- * @type {number}
- * @private
- */
-goog.math.Integer.TWO_PWR_32_DBL_ = (1 << 16) * (1 << 16);
-
-
-/** @type {!goog.math.Integer} */
-goog.math.Integer.ZERO = goog.math.Integer.fromInt(0);
-
-
-/** @type {!goog.math.Integer} */
-goog.math.Integer.ONE = goog.math.Integer.fromInt(1);
-
-
-/**
- * @type {!goog.math.Integer}
- * @private
- */
-goog.math.Integer.TWO_PWR_24_ = goog.math.Integer.fromInt(1 << 24);
-
-
-/**
- * Returns the value, assuming it is a 32-bit integer.
- * @return {number} The corresponding int value.
- */
-goog.math.Integer.prototype.toInt = function() {
- return this.bits_.length > 0 ? this.bits_[0] : this.sign_;
-};
-
-
-/** @return {number} The closest floating-point representation to this value. */
-goog.math.Integer.prototype.toNumber = function() {
- if (this.isNegative()) {
- return -this.negate().toNumber();
- } else {
- var val = 0;
- var pow = 1;
- for (var i = 0; i < this.bits_.length; i++) {
- val += this.getBitsUnsigned(i) * pow;
- pow *= goog.math.Integer.TWO_PWR_32_DBL_;
- }
- return val;
- }
-};
-
-
-/**
- * @param {number=} opt_radix The radix in which the text should be written.
- * @return {string} The textual representation of this value.
- * @override
- */
-goog.math.Integer.prototype.toString = function(opt_radix) {
- var radix = opt_radix || 10;
- if (radix < 2 || 36 < radix) {
- throw Error('radix out of range: ' + radix);
- }
-
- if (this.isZero()) {
- return '0';
- } else if (this.isNegative()) {
- return '-' + this.negate().toString(radix);
- }
-
- // Do several (6) digits each time through the loop, so as to
- // minimize the calls to the very expensive emulated div.
- var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 6));
-
- var rem = this;
- var result = '';
- while (true) {
- var remDiv = rem.divide(radixToPower);
- // The right shifting fixes negative values in the case when
- // intval >= 2^31; for more details see
- // https://github.com/google/closure-library/pull/498
- var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0;
- var digits = intval.toString(radix);
-
- rem = remDiv;
- if (rem.isZero()) {
- return digits + result;
- } else {
- while (digits.length < 6) {
- digits = '0' + digits;
- }
- result = '' + digits + result;
- }
- }
-};
-
-
-/**
- * Returns the index-th 32-bit (signed) piece of the Integer according to
- * little-endian order (i.e., index 0 contains the smallest bits).
- * @param {number} index The index in question.
- * @return {number} The requested 32-bits as a signed number.
- */
-goog.math.Integer.prototype.getBits = function(index) {
- if (index < 0) {
- return 0; // Allowing this simplifies bit shifting operations below...
- } else if (index < this.bits_.length) {
- return this.bits_[index];
- } else {
- return this.sign_;
- }
-};
-
-
-/**
- * Returns the index-th 32-bit piece as an unsigned number.
- * @param {number} index The index in question.
- * @return {number} The requested 32-bits as an unsigned number.
- */
-goog.math.Integer.prototype.getBitsUnsigned = function(index) {
- var val = this.getBits(index);
- return val >= 0 ? val : goog.math.Integer.TWO_PWR_32_DBL_ + val;
-};
-
-
-/** @return {number} The sign bit of this number, -1 or 0. */
-goog.math.Integer.prototype.getSign = function() {
- return this.sign_;
-};
-
-
-/** @return {boolean} Whether this value is zero. */
-goog.math.Integer.prototype.isZero = function() {
- if (this.sign_ != 0) {
- return false;
- }
- for (var i = 0; i < this.bits_.length; i++) {
- if (this.bits_[i] != 0) {
- return false;
- }
- }
- return true;
-};
-
-
-/** @return {boolean} Whether this value is negative. */
-goog.math.Integer.prototype.isNegative = function() {
- return this.sign_ == -1;
-};
-
-
-/** @return {boolean} Whether this value is odd. */
-goog.math.Integer.prototype.isOdd = function() {
- return (this.bits_.length == 0) && (this.sign_ == -1) ||
- (this.bits_.length > 0) && ((this.bits_[0] & 1) != 0);
-};
-
-
-/**
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {boolean} Whether this Integer equals the other.
- */
-goog.math.Integer.prototype.equals = function(other) {
- if (this.sign_ != other.sign_) {
- return false;
- }
- var len = Math.max(this.bits_.length, other.bits_.length);
- for (var i = 0; i < len; i++) {
- if (this.getBits(i) != other.getBits(i)) {
- return false;
- }
- }
- return true;
-};
-
-
-/**
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {boolean} Whether this Integer does not equal the other.
- */
-goog.math.Integer.prototype.notEquals = function(other) {
- return !this.equals(other);
-};
-
-
-/**
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {boolean} Whether this Integer is greater than the other.
- */
-goog.math.Integer.prototype.greaterThan = function(other) {
- return this.compare(other) > 0;
-};
-
-
-/**
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {boolean} Whether this Integer is greater than or equal to the other.
- */
-goog.math.Integer.prototype.greaterThanOrEqual = function(other) {
- return this.compare(other) >= 0;
-};
-
-
-/**
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {boolean} Whether this Integer is less than the other.
- */
-goog.math.Integer.prototype.lessThan = function(other) {
- return this.compare(other) < 0;
-};
-
-
-/**
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {boolean} Whether this Integer is less than or equal to the other.
- */
-goog.math.Integer.prototype.lessThanOrEqual = function(other) {
- return this.compare(other) <= 0;
-};
-
-
-/**
- * Compares this Integer with the given one.
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {number} 0 if they are the same, 1 if the this is greater, and -1
- * if the given one is greater.
- */
-goog.math.Integer.prototype.compare = function(other) {
- var diff = this.subtract(other);
- if (diff.isNegative()) {
- return -1;
- } else if (diff.isZero()) {
- return 0;
- } else {
- return +1;
- }
-};
-
-
-/**
- * Returns an integer with only the first numBits bits of this value, sign
- * extended from the final bit.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Integer} The shorted integer value.
- */
-goog.math.Integer.prototype.shorten = function(numBits) {
- var arr_index = (numBits - 1) >> 5;
- var bit_index = (numBits - 1) % 32;
- var bits = [];
- for (var i = 0; i < arr_index; i++) {
- bits[i] = this.getBits(i);
- }
- var sigBits = bit_index == 31 ? 0xFFFFFFFF : (1 << (bit_index + 1)) - 1;
- var val = this.getBits(arr_index) & sigBits;
- if (val & (1 << bit_index)) {
- val |= 0xFFFFFFFF - sigBits;
- bits[arr_index] = val;
- return new goog.math.Integer(bits, -1);
- } else {
- bits[arr_index] = val;
- return new goog.math.Integer(bits, 0);
- }
-};
-
-
-/** @return {!goog.math.Integer} The negation of this value. */
-goog.math.Integer.prototype.negate = function() {
- return this.not().add(goog.math.Integer.ONE);
-};
-
-
-/**
- * Returns the sum of this and the given Integer.
- * @param {goog.math.Integer} other The Integer to add to this.
- * @return {!goog.math.Integer} The Integer result.
- */
-goog.math.Integer.prototype.add = function(other) {
- var len = Math.max(this.bits_.length, other.bits_.length);
- var arr = [];
- var carry = 0;
-
- for (var i = 0; i <= len; i++) {
- var a1 = this.getBits(i) >>> 16;
- var a0 = this.getBits(i) & 0xFFFF;
-
- var b1 = other.getBits(i) >>> 16;
- var b0 = other.getBits(i) & 0xFFFF;
-
- var c0 = carry + a0 + b0;
- var c1 = (c0 >>> 16) + a1 + b1;
- carry = c1 >>> 16;
- c0 &= 0xFFFF;
- c1 &= 0xFFFF;
- arr[i] = (c1 << 16) | c0;
- }
- return goog.math.Integer.fromBits(arr);
-};
-
-
-/**
- * Returns the difference of this and the given Integer.
- * @param {goog.math.Integer} other The Integer to subtract from this.
- * @return {!goog.math.Integer} The Integer result.
- */
-goog.math.Integer.prototype.subtract = function(other) {
- return this.add(other.negate());
-};
-
-
-/**
- * Returns the product of this and the given Integer.
- * @param {goog.math.Integer} other The Integer to multiply against this.
- * @return {!goog.math.Integer} The product of this and the other.
- */
-goog.math.Integer.prototype.multiply = function(other) {
- if (this.isZero()) {
- return goog.math.Integer.ZERO;
- } else if (other.isZero()) {
- return goog.math.Integer.ZERO;
- }
-
- if (this.isNegative()) {
- if (other.isNegative()) {
- return this.negate().multiply(other.negate());
- } else {
- return this.negate().multiply(other).negate();
- }
- } else if (other.isNegative()) {
- return this.multiply(other.negate()).negate();
- }
-
- // If both numbers are small, use float multiplication
- if (this.lessThan(goog.math.Integer.TWO_PWR_24_) &&
- other.lessThan(goog.math.Integer.TWO_PWR_24_)) {
- return goog.math.Integer.fromNumber(this.toNumber() * other.toNumber());
- }
-
- // Fill in an array of 16-bit products.
- var len = this.bits_.length + other.bits_.length;
- var arr = [];
- for (var i = 0; i < 2 * len; i++) {
- arr[i] = 0;
- }
- for (var i = 0; i < this.bits_.length; i++) {
- for (var j = 0; j < other.bits_.length; j++) {
- var a1 = this.getBits(i) >>> 16;
- var a0 = this.getBits(i) & 0xFFFF;
-
- var b1 = other.getBits(j) >>> 16;
- var b0 = other.getBits(j) & 0xFFFF;
-
- arr[2 * i + 2 * j] += a0 * b0;
- goog.math.Integer.carry16_(arr, 2 * i + 2 * j);
- arr[2 * i + 2 * j + 1] += a1 * b0;
- goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1);
- arr[2 * i + 2 * j + 1] += a0 * b1;
- goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1);
- arr[2 * i + 2 * j + 2] += a1 * b1;
- goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 2);
- }
- }
-
- // Combine the 16-bit values into 32-bit values.
- for (var i = 0; i < len; i++) {
- arr[i] = (arr[2 * i + 1] << 16) | arr[2 * i];
- }
- for (var i = len; i < 2 * len; i++) {
- arr[i] = 0;
- }
- return new goog.math.Integer(arr, 0);
-};
-
-
-/**
- * Carries any overflow from the given index into later entries.
- * @param {Array<number>} bits Array of 16-bit values in little-endian order.
- * @param {number} index The index in question.
- * @private
- */
-goog.math.Integer.carry16_ = function(bits, index) {
- while ((bits[index] & 0xFFFF) != bits[index]) {
- bits[index + 1] += bits[index] >>> 16;
- bits[index] &= 0xFFFF;
- }
-};
-
-
-/**
- * Returns "this" Integer divided by the given one. Both "this" and the given
- * Integer MUST be positive.
- *
- * This method is only needed for very large numbers (>10^308),
- * for which the original division algorithm gets into an infinite
- * loop (see https://github.com/google/closure-library/issues/500).
- *
- * The algorithm has some possible performance enhancements (or
- * could be rewritten entirely), it's just an initial solution for
- * the issue linked above.
- *
- * @param {!goog.math.Integer} other The Integer to divide "this" by.
- * @return {!goog.math.Integer} "this" value divided by the given one.
- * @private
- */
-goog.math.Integer.prototype.slowDivide_ = function(other) {
- if (this.isNegative() || other.isNegative()) {
- throw Error('slowDivide_ only works with positive integers.');
- }
-
- var twoPower = goog.math.Integer.ONE;
- var multiple = other;
-
- // First we have to figure out what the highest bit of the result
- // is, so we increase "twoPower" and "multiple" until "multiple"
- // exceeds "this".
- while (multiple.lessThanOrEqual(this)) {
- twoPower = twoPower.shiftLeft(1);
- multiple = multiple.shiftLeft(1);
- }
-
- // Rewind by one power of two, giving us the highest bit of the
- // result.
- var res = twoPower.shiftRight(1);
- var total = multiple.shiftRight(1);
-
- // Now we starting decreasing "multiple" and "twoPower" to find the
- // rest of the bits of the result.
- var total2;
- multiple = multiple.shiftRight(2);
- twoPower = twoPower.shiftRight(2);
- while (!multiple.isZero()) {
- // whenever we can add "multiple" to the total and not exceed
- // "this", that means we've found a 1 bit. Else we've found a 0
- // and don't need to add to the result.
- total2 = total.add(multiple);
- if (total2.lessThanOrEqual(this)) {
- res = res.add(twoPower);
- total = total2;
- }
- multiple = multiple.shiftRight(1);
- twoPower = twoPower.shiftRight(1);
- }
- return res;
-};
-
-
-/**
- * Returns this Integer divided by the given one.
- * @param {!goog.math.Integer} other The Integer to divide this by.
- * @return {!goog.math.Integer} This value divided by the given one.
- */
-goog.math.Integer.prototype.divide = function(other) {
- if (other.isZero()) {
- throw Error('division by zero');
- } else if (this.isZero()) {
- return goog.math.Integer.ZERO;
- }
-
- if (this.isNegative()) {
- if (other.isNegative()) {
- return this.negate().divide(other.negate());
- } else {
- return this.negate().divide(other).negate();
- }
- } else if (other.isNegative()) {
- return this.divide(other.negate()).negate();
- }
-
- // Have to degrade to slowDivide for Very Large Numbers, because
- // they're out of range for the floating-point approximation
- // technique used below.
- if (this.bits_.length > 30) {
- return this.slowDivide_(other);
- }
-
- // Repeat the following until the remainder is less than other: find a
- // floating-point that approximates remainder / other *from below*, add this
- // into the result, and subtract it from the remainder. It is critical that
- // the approximate value is less than or equal to the real value so that the
- // remainder never becomes negative.
- var res = goog.math.Integer.ZERO;
- var rem = this;
- while (rem.greaterThanOrEqual(other)) {
- // Approximate the result of division. This may be a little greater or
- // smaller than the actual value.
- var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
-
- // We will tweak the approximate result by changing it in the 48-th digit or
- // the smallest non-fractional digit, whichever is larger.
- var log2 = Math.ceil(Math.log(approx) / Math.LN2);
- var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
-
- // Decrease the approximation until it is smaller than the remainder. Note
- // that if it is too large, the product overflows and is negative.
- var approxRes = goog.math.Integer.fromNumber(approx);
- var approxRem = approxRes.multiply(other);
- while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
- approx -= delta;
- approxRes = goog.math.Integer.fromNumber(approx);
- approxRem = approxRes.multiply(other);
- }
-
- // We know the answer can't be zero... and actually, zero would cause
- // infinite recursion since we would make no progress.
- if (approxRes.isZero()) {
- approxRes = goog.math.Integer.ONE;
- }
-
- res = res.add(approxRes);
- rem = rem.subtract(approxRem);
- }
- return res;
-};
-
-
-/**
- * Returns this Integer modulo the given one.
- * @param {!goog.math.Integer} other The Integer by which to mod.
- * @return {!goog.math.Integer} This value modulo the given one.
- */
-goog.math.Integer.prototype.modulo = function(other) {
- return this.subtract(this.divide(other).multiply(other));
-};
-
-
-/** @return {!goog.math.Integer} The bitwise-NOT of this value. */
-goog.math.Integer.prototype.not = function() {
- var len = this.bits_.length;
- var arr = [];
- for (var i = 0; i < len; i++) {
- arr[i] = ~this.bits_[i];
- }
- return new goog.math.Integer(arr, ~this.sign_);
-};
-
-
-/**
- * Returns the bitwise-AND of this Integer and the given one.
- * @param {goog.math.Integer} other The Integer to AND with this.
- * @return {!goog.math.Integer} The bitwise-AND of this and the other.
- */
-goog.math.Integer.prototype.and = function(other) {
- var len = Math.max(this.bits_.length, other.bits_.length);
- var arr = [];
- for (var i = 0; i < len; i++) {
- arr[i] = this.getBits(i) & other.getBits(i);
- }
- return new goog.math.Integer(arr, this.sign_ & other.sign_);
-};
-
-
-/**
- * Returns the bitwise-OR of this Integer and the given one.
- * @param {goog.math.Integer} other The Integer to OR with this.
- * @return {!goog.math.Integer} The bitwise-OR of this and the other.
- */
-goog.math.Integer.prototype.or = function(other) {
- var len = Math.max(this.bits_.length, other.bits_.length);
- var arr = [];
- for (var i = 0; i < len; i++) {
- arr[i] = this.getBits(i) | other.getBits(i);
- }
- return new goog.math.Integer(arr, this.sign_ | other.sign_);
-};
-
-
-/**
- * Returns the bitwise-XOR of this Integer and the given one.
- * @param {goog.math.Integer} other The Integer to XOR with this.
- * @return {!goog.math.Integer} The bitwise-XOR of this and the other.
- */
-goog.math.Integer.prototype.xor = function(other) {
- var len = Math.max(this.bits_.length, other.bits_.length);
- var arr = [];
- for (var i = 0; i < len; i++) {
- arr[i] = this.getBits(i) ^ other.getBits(i);
- }
- return new goog.math.Integer(arr, this.sign_ ^ other.sign_);
-};
-
-
-/**
- * Returns this value with bits shifted to the left by the given amount.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Integer} This shifted to the left by the given amount.
- */
-goog.math.Integer.prototype.shiftLeft = function(numBits) {
- var arr_delta = numBits >> 5;
- var bit_delta = numBits % 32;
- var len = this.bits_.length + arr_delta + (bit_delta > 0 ? 1 : 0);
- var arr = [];
- for (var i = 0; i < len; i++) {
- if (bit_delta > 0) {
- arr[i] = (this.getBits(i - arr_delta) << bit_delta) |
- (this.getBits(i - arr_delta - 1) >>> (32 - bit_delta));
- } else {
- arr[i] = this.getBits(i - arr_delta);
- }
- }
- return new goog.math.Integer(arr, this.sign_);
-};
-
-
-/**
- * Returns this value with bits shifted to the right by the given amount.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Integer} This shifted to the right by the given amount.
- */
-goog.math.Integer.prototype.shiftRight = function(numBits) {
- var arr_delta = numBits >> 5;
- var bit_delta = numBits % 32;
- var len = this.bits_.length - arr_delta;
- var arr = [];
- for (var i = 0; i < len; i++) {
- if (bit_delta > 0) {
- arr[i] = (this.getBits(i + arr_delta) >>> bit_delta) |
- (this.getBits(i + arr_delta + 1) << (32 - bit_delta));
- } else {
- arr[i] = this.getBits(i + arr_delta);
- }
- }
- return new goog.math.Integer(arr, this.sign_);
-};
diff --git a/assets/viz/1/goog/math/long.js b/assets/viz/1/goog/math/long.js
deleted file mode 100644
index a43ea3f..0000000
--- a/assets/viz/1/goog/math/long.js
+++ /dev/null
@@ -1,843 +0,0 @@
-// Copyright 2009 The Closure Library Authors. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS-IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/**
- * @fileoverview Defines a Long class for representing a 64-bit two's-complement
- * integer value, which faithfully simulates the behavior of a Java "long". This
- * implementation is derived from LongLib in GWT.
- *
- */
-
-goog.provide('goog.math.Long');
-
-goog.require('goog.reflect');
-
-
-
-/**
- * Constructs a 64-bit two's-complement integer, given its low and high 32-bit
- * values as *signed* integers. See the from* functions below for more
- * convenient ways of constructing Longs.
- *
- * The internal representation of a long is the two given signed, 32-bit values.
- * We use 32-bit pieces because these are the size of integers on which
- * Javascript performs bit-operations. For operations like addition and
- * multiplication, we split each number into 16-bit pieces, which can easily be
- * multiplied within Javascript's floating-point representation without overflow
- * or change in sign.
- *
- * In the algorithms below, we frequently reduce the negative case to the
- * positive case by negating the input(s) and then post-processing the result.
- * Note that we must ALWAYS check specially whether those values are MIN_VALUE
- * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
- * a positive number, it overflows back into a negative). Not handling this
- * case would often result in infinite recursion.
- *
- * @param {number} low The low (signed) 32 bits of the long.
- * @param {number} high The high (signed) 32 bits of the long.
- * @struct
- * @constructor
- * @final
- */
-goog.math.Long = function(low, high) {
- /**
- * @type {number}
- * @private
- */
- this.low_ = low | 0; // force into 32 signed bits.
-
- /**
- * @type {number}
- * @private
- */
- this.high_ = high | 0; // force into 32 signed bits.
-};
-
-
-// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
-// from* methods on which they depend.
-
-
-/**
- * A cache of the Long representations of small integer values.
- * @type {!Object<number, !goog.math.Long>}
- * @private
- */
-goog.math.Long.IntCache_ = {};
-
-
-/**
- * A cache of the Long representations of common values.
- * @type {!Object<goog.math.Long.ValueCacheId_, !goog.math.Long>}
- * @private
- */
-goog.math.Long.valueCache_ = {};
-
-
-/**
- * Returns a Long representing the given (32-bit) integer value.
- * @param {number} value The 32-bit integer in question.
- * @return {!goog.math.Long} The corresponding Long value.
- */
-goog.math.Long.fromInt = function(value) {
- if (-128 <= value && value < 128) {
- return goog.reflect.cache(goog.math.Long.IntCache_, value, function(val) {
- return new goog.math.Long(val | 0, val < 0 ? -1 : 0);
- });
- } else {
- return new goog.math.Long(value | 0, value < 0 ? -1 : 0);
- }
-};
-
-
-/**
- * Returns a Long representing the given value.
- * NaN will be returned as zero. Infinity is converted to max value and
- * -Infinity to min value.
- * @param {number} value The number in question.
- * @return {!goog.math.Long} The corresponding Long value.
- */
-goog.math.Long.fromNumber = function(value) {
- if (isNaN(value)) {
- return goog.math.Long.getZero();
- } else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) {
- return goog.math.Long.getMinValue();
- } else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) {
- return goog.math.Long.getMaxValue();
- } else if (value < 0) {
- return goog.math.Long.fromNumber(-value).negate();
- } else {
- return new goog.math.Long(
- (value % goog.math.Long.TWO_PWR_32_DBL_) | 0,
- (value / goog.math.Long.TWO_PWR_32_DBL_) | 0);
- }
-};
-
-
-/**
- * Returns a Long representing the 64-bit integer that comes by concatenating
- * the given high and low bits. Each is assumed to use 32 bits.
- * @param {number} lowBits The low 32-bits.
- * @param {number} highBits The high 32-bits.
- * @return {!goog.math.Long} The corresponding Long value.
- */
-goog.math.Long.fromBits = function(lowBits, highBits) {
- return new goog.math.Long(lowBits, highBits);
-};
-
-
-/**
- * Returns a Long representation of the given string, written using the given
- * radix.
- * @param {string} str The textual representation of the Long.
- * @param {number=} opt_radix The radix in which the text is written.
- * @return {!goog.math.Long} The corresponding Long value.
- */
-goog.math.Long.fromString = function(str, opt_radix) {
- if (str.length == 0) {
- throw Error('number format error: empty string');
- }
-
- var radix = opt_radix || 10;
- if (radix < 2 || 36 < radix) {
- throw Error('radix out of range: ' + radix);
- }
-
- if (str.charAt(0) == '-') {
- return goog.math.Long.fromString(str.substring(1), radix).negate();
- } else if (str.indexOf('-') >= 0) {
- throw Error('number format error: interior "-" character: ' + str);
- }
-
- // Do several (8) digits each time through the loop, so as to
- // minimize the calls to the very expensive emulated div.
- var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8));
-
- var result = goog.math.Long.getZero();
- for (var i = 0; i < str.length; i += 8) {
- var size = Math.min(8, str.length - i);
- var value = parseInt(str.substring(i, i + size), radix);
- if (size < 8) {
- var power = goog.math.Long.fromNumber(Math.pow(radix, size));
- result = result.multiply(power).add(goog.math.Long.fromNumber(value));
- } else {
- result = result.multiply(radixToPower);
- result = result.add(goog.math.Long.fromNumber(value));
- }
- }
- return result;
-};
-
-
-// NOTE: the compiler should inline these constant values below and then remove
-// these variables, so there should be no runtime penalty for these.
-
-
-/**
- * Number used repeated below in calculations. This must appear before the
- * first call to any from* function below.
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16;
-
-
-/**
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_32_DBL_ =
- goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
-
-
-/**
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_64_DBL_ =
- goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_;
-
-
-/**
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_63_DBL_ = goog.math.Long.TWO_PWR_64_DBL_ / 2;
-
-
-/**
- * @return {!goog.math.Long}
- * @public
- */
-goog.math.Long.getZero = function() {
- return goog.reflect.cache(
- goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.ZERO,
- function() { return goog.math.Long.fromInt(0); });
-};
-
-
-/**
- * @return {!goog.math.Long}
- * @public
- */
-goog.math.Long.getOne = function() {
- return goog.reflect.cache(
- goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.ONE,
- function() { return goog.math.Long.fromInt(1); });
-};
-
-
-/**
- * @return {!goog.math.Long}
- * @public
- */
-goog.math.Long.getNegOne = function() {
- return goog.reflect.cache(
- goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.NEG_ONE,
- function() { return goog.math.Long.fromInt(-1); });
-};
-
-
-/**
- * @return {!goog.math.Long}
- * @public
- */
-goog.math.Long.getMaxValue = function() {
- return goog.reflect.cache(
- goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MAX_VALUE,
- function() {
- return goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0);
- });
-};
-
-
-/**
- * @return {!goog.math.Long}
- * @public
- */
-goog.math.Long.getMinValue = function() {
- return goog.reflect.cache(
- goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MIN_VALUE,
- function() { return goog.math.Long.fromBits(0, 0x80000000 | 0); });
-};
-
-
-/**
- * @return {!goog.math.Long}
- * @public
- */
-goog.math.Long.getTwoPwr24 = function() {
- return goog.reflect.cache(
- goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.TWO_PWR_24,
- function() { return goog.math.Long.fromInt(1 << 24); });
-};
-
-
-/** @return {number} The value, assuming it is a 32-bit integer. */
-goog.math.Long.prototype.toInt = function() {
- return this.low_;
-};
-
-
-/** @return {number} The closest floating-point representation to this value. */
-goog.math.Long.prototype.toNumber = function() {
- return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ +
- this.getLowBitsUnsigned();
-};
-
-
-/**
- * @param {number=} opt_radix The radix in which the text should be written.
- * @return {string} The textual representation of this value.
- * @override
- */
-goog.math.Long.prototype.toString = function(opt_radix) {
- var radix = opt_radix || 10;
- if (radix < 2 || 36 < radix) {
- throw Error('radix out of range: ' + radix);
- }
-
- if (this.isZero()) {
- return '0';
- }
-
- if (this.isNegative()) {
- if (this.equals(goog.math.Long.getMinValue())) {
- // We need to change the Long value before it can be negated, so we remove
- // the bottom-most digit in this base and then recurse to do the rest.
- var radixLong = goog.math.Long.fromNumber(radix);
- var div = this.div(radixLong);
- var rem = div.multiply(radixLong).subtract(this);
- return div.toString(radix) + rem.toInt().toString(radix);
- } else {
- return '-' + this.negate().toString(radix);
- }
- }
-
- // Do several (6) digits each time through the loop, so as to
- // minimize the calls to the very expensive emulated div.
- var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6));
-
- var rem = this;
- var result = '';
- while (true) {
- var remDiv = rem.div(radixToPower);
- // The right shifting fixes negative values in the case when
- // intval >= 2^31; for more details see
- // https://github.com/google/closure-library/pull/498
- var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0;
- var digits = intval.toString(radix);
-
- rem = remDiv;
- if (rem.isZero()) {
- return digits + result;
- } else {
- while (digits.length < 6) {
- digits = '0' + digits;
- }
- result = '' + digits + result;
- }
- }
-};
-
-
-/** @return {number} The high 32-bits as a signed value. */
-goog.math.Long.prototype.getHighBits = function() {
- return this.high_;
-};
-
-
-/** @return {number} The low 32-bits as a signed value. */
-goog.math.Long.prototype.getLowBits = function() {
- return this.low_;
-};
-
-
-/** @return {number} The low 32-bits as an unsigned value. */
-goog.math.Long.prototype.getLowBitsUnsigned = function() {
- return (this.low_ >= 0) ? this.low_ :
- goog.math.Long.TWO_PWR_32_DBL_ + this.low_;
-};
-
-
-/**
- * @return {number} Returns the number of bits needed to represent the absolute
- * value of this Long.
- */
-goog.math.Long.prototype.getNumBitsAbs = function() {
- if (this.isNegative()) {
- if (this.equals(goog.math.Long.getMinValue())) {
- return 64;
- } else {
- return this.negate().getNumBitsAbs();
- }
- } else {
- var val = this.high_ != 0 ? this.high_ : this.low_;
- for (var bit = 31; bit > 0; bit--) {
- if ((val & (1 << bit)) != 0) {
- break;
- }
- }
- return this.high_ != 0 ? bit + 33 : bit + 1;
- }
-};
-
-
-/** @return {boolean} Whether this value is zero. */
-goog.math.Long.prototype.isZero = function() {
- return this.high_ == 0 && this.low_ == 0;
-};
-
-
-/** @return {boolean} Whether this value is negative. */
-goog.math.Long.prototype.isNegative = function() {
- return this.high_ < 0;
-};
-
-
-/** @return {boolean} Whether this value is odd. */
-goog.math.Long.prototype.isOdd = function() {
- return (this.low_ & 1) == 1;
-};
-
-
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long equals the other.
- */
-goog.math.Long.prototype.equals = function(other) {
- return (this.high_ == other.high_) && (this.low_ == other.low_);
-};
-
-
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long does not equal the other.
- */
-goog.math.Long.prototype.notEquals = function(other) {
- return (this.high_ != other.high_) || (this.low_ != other.low_);
-};
-
-
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long is less than the other.
- */
-goog.math.Long.prototype.lessThan = function(other) {
- return this.compare(other) < 0;
-};
-
-
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long is less than or equal to the other.
- */
-goog.math.Long.prototype.lessThanOrEqual = function(other) {
- return this.compare(other) <= 0;
-};
-
-
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long is greater than the other.
- */
-goog.math.Long.prototype.greaterThan = function(other) {
- return this.compare(other) > 0;
-};
-
-
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long is greater than or equal to the other.
- */
-goog.math.Long.prototype.greaterThanOrEqual = function(other) {
- return this.compare(other) >= 0;
-};
-
-
-/**
- * Compares this Long with the given one.
- * @param {goog.math.Long} other Long to compare against.
- * @return {number} 0 if they are the same, 1 if the this is greater, and -1
- * if the given one is greater.
- */
-goog.math.Long.prototype.compare = function(other) {
- if (this.equals(other)) {
- return 0;
- }
-
- var thisNeg = this.isNegative();
- var otherNeg = other.isNegative();
- if (thisNeg && !otherNeg) {
- return -1;
- }
- if (!thisNeg && otherNeg) {
- return 1;
- }
-
- // at this point, the signs are the same, so subtraction will not overflow
- if (this.subtract(other).isNegative()) {
- return -1;
- } else {
- return 1;
- }
-};
-
-
-/** @return {!goog.math.Long} The negation of this value. */
-goog.math.Long.prototype.negate = function() {
- if (this.equals(goog.math.Long.getMinValue())) {
- return goog.math.Long.getMinValue();
- } else {
- return this.not().add(goog.math.Long.getOne());
- }
-};
-
-
-/**
- * Returns the sum of this and the given Long.
- * @param {goog.math.Long} other Long to add to this one.
- * @return {!goog.math.Long} The sum of this and the given Long.
- */
-goog.math.Long.prototype.add = function(other) {
- // Divide each number into 4 chunks of 16 bits, and then sum the chunks.
-
- var a48 = this.high_ >>> 16;
- var a32 = this.high_ & 0xFFFF;
- var a16 = this.low_ >>> 16;
- var a00 = this.low_ & 0xFFFF;
-
- var b48 = other.high_ >>> 16;
- var b32 = other.high_ & 0xFFFF;
- var b16 = other.low_ >>> 16;
- var b00 = other.low_ & 0xFFFF;
-
- var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
- c00 += a00 + b00;
- c16 += c00 >>> 16;
- c00 &= 0xFFFF;
- c16 += a16 + b16;
- c32 += c16 >>> 16;
- c16 &= 0xFFFF;
- c32 += a32 + b32;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c48 += a48 + b48;
- c48 &= 0xFFFF;
- return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
-};
-
-
-/**
- * Returns the difference of this and the given Long.
- * @param {goog.math.Long} other Long to subtract from this.
- * @return {!goog.math.Long} The difference of this and the given Long.
- */
-goog.math.Long.prototype.subtract = function(other) {
- return this.add(other.negate());
-};
-
-
-/**
- * Returns the product of this and the given long.
- * @param {goog.math.Long} other Long to multiply with this.
- * @return {!goog.math.Long} The product of this and the other.
- */
-goog.math.Long.prototype.multiply = function(other) {
- if (this.isZero()) {
- return goog.math.Long.getZero();
- } else if (other.isZero()) {
- return goog.math.Long.getZero();
- }
-
- if (this.equals(goog.math.Long.getMinValue())) {
- return other.isOdd() ? goog.math.Long.getMinValue() :
- goog.math.Long.getZero();
- } else if (other.equals(goog.math.Long.getMinValue())) {
- return this.isOdd() ? goog.math.Long.getMinValue() :
- goog.math.Long.getZero();
- }
-
- if (this.isNegative()) {
- if (other.isNegative()) {
- return this.negate().multiply(other.negate());
- } else {
- return this.negate().multiply(other).negate();
- }
- } else if (other.isNegative()) {
- return this.multiply(other.negate()).negate();
- }
-
- // If both longs are small, use float multiplication
- if (this.lessThan(goog.math.Long.getTwoPwr24()) &&
- other.lessThan(goog.math.Long.getTwoPwr24())) {
- return goog.math.Long.fromNumber(this.toNumber() * other.toNumber());
- }
-
- // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
- // We can skip products that would overflow.
-
- var a48 = this.high_ >>> 16;
- var a32 = this.high_ & 0xFFFF;
- var a16 = this.low_ >>> 16;
- var a00 = this.low_ & 0xFFFF;
-
- var b48 = other.high_ >>> 16;
- var b32 = other.high_ & 0xFFFF;
- var b16 = other.low_ >>> 16;
- var b00 = other.low_ & 0xFFFF;
-
- var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
- c00 += a00 * b00;
- c16 += c00 >>> 16;
- c00 &= 0xFFFF;
- c16 += a16 * b00;
- c32 += c16 >>> 16;
- c16 &= 0xFFFF;
- c16 += a00 * b16;
- c32 += c16 >>> 16;
- c16 &= 0xFFFF;
- c32 += a32 * b00;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c32 += a16 * b16;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c32 += a00 * b32;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
- c48 &= 0xFFFF;
- return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
-};
-
-
-/**
- * Returns this Long divided by the given one.
- * @param {goog.math.Long} other Long by which to divide.
- * @return {!goog.math.Long} This Long divided by the given one.
- */
-goog.math.Long.prototype.div = function(other) {
- if (other.isZero()) {
- throw Error('division by zero');
- } else if (this.isZero()) {
- return goog.math.Long.getZero();
- }
-
- if (this.equals(goog.math.Long.getMinValue())) {
- if (other.equals(goog.math.Long.getOne()) ||
- other.equals(goog.math.Long.getNegOne())) {
- return goog.math.Long.getMinValue(); // recall -MIN_VALUE == MIN_VALUE
- } else if (other.equals(goog.math.Long.getMinValue())) {
- return goog.math.Long.getOne();
- } else {
- // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
- var halfThis = this.shiftRight(1);
- var approx = halfThis.div(other).shiftLeft(1);
- if (approx.equals(goog.math.Long.getZero())) {
- return other.isNegative() ? goog.math.Long.getOne() :
- goog.math.Long.getNegOne();
- } else {
- var rem = this.subtract(other.multiply(approx));
- var result = approx.add(rem.div(other));
- return result;
- }
- }
- } else if (other.equals(goog.math.Long.getMinValue())) {
- return goog.math.Long.getZero();
- }
-
- if (this.isNegative()) {
- if (other.isNegative()) {
- return this.negate().div(other.negate());
- } else {
- return this.negate().div(other).negate();
- }
- } else if (other.isNegative()) {
- return this.div(other.negate()).negate();
- }
-
- // Repeat the following until the remainder is less than other: find a
- // floating-point that approximates remainder / other *from below*, add this
- // into the result, and subtract it from the remainder. It is critical that
- // the approximate value is less than or equal to the real value so that the
- // remainder never becomes negative.
- var res = goog.math.Long.getZero();
- var rem = this;
- while (rem.greaterThanOrEqual(other)) {
- // Approximate the result of division. This may be a little greater or
- // smaller than the actual value.
- var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
-
- // We will tweak the approximate result by changing it in the 48-th digit or
- // the smallest non-fractional digit, whichever is larger.
- var log2 = Math.ceil(Math.log(approx) / Math.LN2);
- var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
-
- // Decrease the approximation until it is smaller than the remainder. Note
- // that if it is too large, the product overflows and is negative.
- var approxRes = goog.math.Long.fromNumber(approx);
- var approxRem = approxRes.multiply(other);
- while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
- approx -= delta;
- approxRes = goog.math.Long.fromNumber(approx);
- approxRem = approxRes.multiply(other);
- }
-
- // We know the answer can't be zero... and actually, zero would cause
- // infinite recursion since we would make no progress.
- if (approxRes.isZero()) {
- approxRes = goog.math.Long.getOne();
- }
-
- res = res.add(approxRes);
- rem = rem.subtract(approxRem);
- }
- return res;
-};
-
-
-/**
- * Returns this Long modulo the given one.
- * @param {goog.math.Long} other Long by which to mod.
- * @return {!goog.math.Long} This Long modulo the given one.
- */
-goog.math.Long.prototype.modulo = function(other) {
- return this.subtract(this.div(other).multiply(other));
-};
-
-
-/** @return {!goog.math.Long} The bitwise-NOT of this value. */
-goog.math.Long.prototype.not = function() {
- return goog.math.Long.fromBits(~this.low_, ~this.high_);
-};
-
-
-/**
- * Returns the bitwise-AND of this Long and the given one.
- * @param {goog.math.Long} other The Long with which to AND.
- * @return {!goog.math.Long} The bitwise-AND of this and the other.
- */
-goog.math.Long.prototype.and = function(other) {
- return goog.math.Long.fromBits(
- this.low_ & other.low_, this.high_ & other.high_);
-};
-
-
-/**
- * Returns the bitwise-OR of this Long and the given one.
- * @param {goog.math.Long} other The Long with which to OR.
- * @return {!goog.math.Long} The bitwise-OR of this and the other.
- */
-goog.math.Long.prototype.or = function(other) {
- return goog.math.Long.fromBits(
- this.low_ | other.low_, this.high_ | other.high_);
-};
-
-
-/**
- * Returns the bitwise-XOR of this Long and the given one.
- * @param {goog.math.Long} other The Long with which to XOR.
- * @return {!goog.math.Long} The bitwise-XOR of this and the other.
- */
-goog.math.Long.prototype.xor = function(other) {
- return goog.math.Long.fromBits(
- this.low_ ^ other.low_, this.high_ ^ other.high_);
-};
-
-
-/**
- * Returns this Long with bits shifted to the left by the given amount.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Long} This shifted to the left by the given amount.
- */
-goog.math.Long.prototype.shiftLeft = function(numBits) {
- numBits &= 63;
- if (numBits == 0) {
- return this;
- } else {
- var low = this.low_;
- if (numBits < 32) {
- var high = this.high_;
- return goog.math.Long.fromBits(
- low << numBits, (high << numBits) | (low >>> (32 - numBits)));
- } else {
- return goog.math.Long.fromBits(0, low << (numBits - 32));
- }
- }
-};
-
-
-/**
- * Returns this Long with bits shifted to the right by the given amount.
- * The new leading bits match the current sign bit.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Long} This shifted to the right by the given amount.
- */
-goog.math.Long.prototype.shiftRight = function(numBits) {
- numBits &= 63;
- if (numBits == 0) {
- return this;
- } else {
- var high = this.high_;
- if (numBits < 32) {
- var low = this.low_;
- return goog.math.Long.fromBits(
- (low >>> numBits) | (high << (32 - numBits)), high >> numBits);
- } else {
- return goog.math.Long.fromBits(
- high >> (numBits - 32), high >= 0 ? 0 : -1);
- }
- }
-};
-
-
-/**
- * Returns this Long with bits shifted to the right by the given amount, with
- * zeros placed into the new leading bits.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Long} This shifted to the right by the given amount, with
- * zeros placed into the new leading bits.
- */
-goog.math.Long.prototype.shiftRightUnsigned = function(numBits) {
- numBits &= 63;
- if (numBits == 0) {
- return this;
- } else {
- var high = this.high_;
- if (numBits < 32) {
- var low = this.low_;
- return goog.math.Long.fromBits(
- (low >>> numBits) | (high << (32 - numBits)), high >>> numBits);
- } else if (numBits == 32) {
- return goog.math.Long.fromBits(high, 0);
- } else {
- return goog.math.Long.fromBits(high >>> (numBits - 32), 0);
- }
- }
-};
-
-
-/**
- * @enum {number} Ids of commonly requested Long instances.
- * @private
- */
-goog.math.Long.ValueCacheId_ = {
- MAX_VALUE: 1,
- MIN_VALUE: 2,
- ZERO: 3,
- ONE: 4,
- NEG_ONE: 5,
- TWO_PWR_24: 6
-};
diff --git a/assets/viz/1/goog/math/math.js b/assets/viz/1/goog/math/math.js
deleted file mode 100644
index 95e5fb5..0000000
--- a/assets/viz/1/goog/math/math.js
+++ /dev/null
@@ -1,447 +0,0 @@
-// Copyright 2006 The Closure Library Authors. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS-IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/**
- * @fileoverview Additional mathematical functions.
- */
-
-goog.provide('goog.math');
-
-goog.require('goog.array');
-goog.require('goog.asserts');
-
-
-/**
- * Returns a random integer greater than or equal to 0 and less than {@code a}.
- * @param {number} a The upper bound for the random integer (exclusive).
- * @return {number} A random integer N such that 0 <= N < a.
- */
-goog.math.randomInt = function(a) {
- return Math.floor(Math.random() * a);
-};
-
-
-/**
- * Returns a random number greater than or equal to {@code a} and less than
- * {@code b}.
- * @param {number} a The lower bound for the random number (inclusive).
- * @param {number} b The upper bound for the random number (exclusive).
- * @return {number} A random number N such that a <= N < b.
- */
-goog.math.uniformRandom = function(a, b) {
- return a + Math.random() * (b - a);
-};
-
-
-/**
- * Takes a number and clamps it to within the provided bounds.
- * @param {number} value The input number.
- * @param {number} min The minimum value to return.
- * @param {number} max The maximum value to return.
- * @return {number} The input number if it is within bounds, or the nearest
- * number within the bounds.
- */
-goog.math.clamp = function(value, min, max) {
- return Math.min(Math.max(value, min), max);
-};
-
-
-/**
- * The % operator in JavaScript returns the remainder of a / b, but differs from
- * some other languages in that the result will have the same sign as the
- * dividend. For example, -1 % 8 == -1, whereas in some other languages
- * (such as Python) the result would be 7. This function emulates the more
- * correct modulo behavior, which is useful for certain applications such as
- * calculating an offset index in a circular list.
- *
- * @param {number} a The dividend.
- * @param {number} b The divisor.
- * @return {number} a % b where the result is between 0 and b (either 0 <= x < b
- * or b < x <= 0, depending on the sign of b).
- */
-goog.math.modulo = function(a, b) {
- var r = a % b;
- // If r and b differ in sign, add b to wrap the result to the correct sign.
- return (r * b < 0) ? r + b : r;
-};
-
-
-/**
- * Performs linear interpolation between values a and b. Returns the value
- * between a and b proportional to x (when x is between 0 and 1. When x is
- * outside this range, the return value is a linear extrapolation).
- * @param {number} a A number.
- * @param {number} b A number.
- * @param {number} x The proportion between a and b.
- * @return {number} The interpolated value between a and b.
- */
-goog.math.lerp = function(a, b, x) {
- return a + x * (b - a);
-};
-
-
-/**
- * Tests whether the two values are equal to each other, within a certain
- * tolerance to adjust for floating point errors.
- * @param {number} a A number.
- * @param {number} b A number.
- * @param {number=} opt_tolerance Optional tolerance range. Defaults
- * to 0.000001. If specified, should be greater than 0.
- * @return {boolean} Whether {@code a} and {@code b} are nearly equal.
- */
-goog.math.nearlyEquals = function(a, b, opt_tolerance) {
- return Math.abs(a - b) <= (opt_tolerance || 0.000001);
-};
-
-
-// TODO(user): Rename to normalizeAngle, retaining old name as deprecated
-// alias.
-/**
- * Normalizes an angle to be in range [0-360). Angles outside this range will
- * be normalized to be the equivalent angle with that range.
- * @param {number} angle Angle in degrees.
- * @return {number} Standardized angle.
- */
-goog.math.standardAngle = function(angle) {
- return goog.math.modulo(angle, 360);
-};
-
-
-/**
- * Normalizes an angle to be in range [0-2*PI). Angles outside this range will
- * be normalized to be the equivalent angle with that range.
- * @param {number} angle Angle in radians.
- * @return {number} Standardized angle.
- */
-goog.math.standardAngleInRadians = function(angle) {
- return goog.math.modulo(angle, 2 * Math.PI);
-};
-
-
-/**
- * Converts degrees to radians.
- * @param {number} angleDegrees Angle in degrees.
- * @return {number} Angle in radians.
- */
-goog.math.toRadians = function(angleDegrees) {
- return angleDegrees * Math.PI / 180;
-};
-
-
-/**
- * Converts radians to degrees.
- * @param {number} angleRadians Angle in radians.
- * @return {number} Angle in degrees.
- */
-goog.math.toDegrees = function(angleRadians) {
- return angleRadians * 180 / Math.PI;
-};
-
-
-/**
- * For a given angle and radius, finds the X portion of the offset.
- * @param {number} degrees Angle in degrees (zero points in +X direction).
- * @param {number} radius Radius.
- * @return {number} The x-distance for the angle and radius.
- */
-goog.math.angleDx = function(degrees, radius) {
- return radius * Math.cos(goog.math.toRadians(degrees));
-};
-
-
-/**
- * For a given angle and radius, finds the Y portion of the offset.
- * @param {number} degrees Angle in degrees (zero points in +X direction).
- * @param {number} radius Radius.
- * @return {number} The y-distance for the angle and radius.
- */
-goog.math.angleDy = function(degrees, radius) {
- return radius * Math.sin(goog.math.toRadians(degrees));
-};
-
-
-/**
- * Computes the angle between two points (x1,y1) and (x2,y2).
- * Angle zero points in the +X direction, 90 degrees points in the +Y
- * direction (down) and from there we grow clockwise towards 360 degrees.
- * @param {number} x1 x of first point.
- * @param {number} y1 y of first point.
- * @param {number} x2 x of second point.
- * @param {number} y2 y of second point.
- * @return {number} Standardized angle in degrees of the vector from
- * x1,y1 to x2,y2.
- */
-goog.math.angle = function(x1, y1, x2, y2) {
- return goog.math.standardAngle(
- goog.math.toDegrees(Math.atan2(y2 - y1, x2 - x1)));
-};
-
-
-/**
- * Computes the difference between startAngle and endAngle (angles in degrees).
- * @param {number} startAngle Start angle in degrees.
- * @param {number} endAngle End angle in degrees.
- * @return {number} The number of degrees that when added to
- * startAngle will result in endAngle. Positive numbers mean that the
- * direction is clockwise. Negative numbers indicate a counter-clockwise
- * direction.
- * The shortest route (clockwise vs counter-clockwise) between the angles
- * is used.
- * When the difference is 180 degrees, the function returns 180 (not -180)
- * angleDifference(30, 40) is 10, and angleDifference(40, 30) is -10.
- * angleDifference(350, 10) is 20, and angleDifference(10, 350) is -20.
- */
-goog.math.angleDifference = function(startAngle, endAngle) {
- var d =
- goog.math.standardAngle(endAngle) - goog.math.standardAngle(startAngle);
- if (d > 180) {
- d = d - 360;
- } else if (d <= -180) {
- d = 360 + d;
- }
- return d;
-};
-
-
-/**
- * Returns the sign of a number as per the "sign" or "signum" function.
- * @param {number} x The number to take the sign of.
- * @return {number} -1 when negative, 1 when positive, 0 when 0. Preserves
- * signed zeros and NaN.
- */
-goog.math.sign = Math.sign || function(x) {
- if (x > 0) {
- return 1;
- }
- if (x < 0) {
- return -1;
- }
- return x; // Preserves signed zeros and NaN.
-};
-
-
-/**
- * JavaScript implementation of Longest Common Subsequence problem.
- * http://en.wikipedia.org/wiki/Longest_common_subsequence
- *
- * Returns the longest possible array that is subarray of both of given arrays.
- *
- * @param {IArrayLike<S>} array1 First array of objects.
- * @param {IArrayLike<T>} array2 Second array of objects.
- * @param {Function=} opt_compareFn Function that acts as a custom comparator
- * for the array ojects. Function should return true if objects are equal,
- * otherwise false.
- * @param {Function=} opt_collectorFn Function used to decide what to return
- * as a result subsequence. It accepts 2 arguments: index of common element
- * in the first array and index in the second. The default function returns
- * element from the first array.
- * @return {!Array<S|T>} A list of objects that are common to both arrays
- * such that there is no common subsequence with size greater than the
- * length of the list.
- * @template S,T
- */
-goog.math.longestCommonSubsequence = function(
- array1, array2, opt_compareFn, opt_collectorFn) {
-
- var compare = opt_compareFn || function(a, b) { return a == b; };
-
- var collect = opt_collectorFn || function(i1, i2) { return array1[i1]; };
-
- var length1 = array1.length;
- var length2 = array2.length;
-
- var arr = [];
- for (var i = 0; i < length1 + 1; i++) {
- arr[i] = [];
- arr[i][0] = 0;
- }
-
- for (var j = 0; j < length2 + 1; j++) {
- arr[0][j] = 0;
- }
-
- for (i = 1; i <= length1; i++) {
- for (j = 1; j <= length2; j++) {
- if (compare(array1[i - 1], array2[j - 1])) {
- arr[i][j] = arr[i - 1][j - 1] + 1;
- } else {
- arr[i][j] = Math.max(arr[i - 1][j], arr[i][j - 1]);
- }
- }
- }
-
- // Backtracking
- var result = [];
- var i = length1, j = length2;
- while (i > 0 && j > 0) {
- if (compare(array1[i - 1], array2[j - 1])) {
- result.unshift(collect(i - 1, j - 1));
- i--;
- j--;
- } else {
- if (arr[i - 1][j] > arr[i][j - 1]) {
- i--;
- } else {
- j--;
- }
- }
- }
-
- return result;
-};
-
-
-/**
- * Returns the sum of the arguments.
- * @param {...number} var_args Numbers to add.
- * @return {number} The sum of the arguments (0 if no arguments were provided,
- * {@code NaN} if any of the arguments is not a valid number).
- */
-goog.math.sum = function(var_args) {
- return /** @type {number} */ (
- goog.array.reduce(
- arguments, function(sum, value) { return sum + value; }, 0));
-};
-
-
-/**
- * Returns the arithmetic mean of the arguments.
- * @param {...number} var_args Numbers to average.
- * @return {number} The average of the arguments ({@code NaN} if no arguments
- * were provided or any of the arguments is not a valid number).
- */
-goog.math.average = function(var_args) {
- return goog.math.sum.apply(null, arguments) / arguments.length;
-};
-
-
-/**
- * Returns the unbiased sample variance of the arguments. For a definition,
- * see e.g. http://en.wikipedia.org/wiki/Variance
- * @param {...number} var_args Number samples to analyze.
- * @return {number} The unbiased sample variance of the arguments (0 if fewer
- * than two samples were provided, or {@code NaN} if any of the samples is
- * not a valid number).
- */
-goog.math.sampleVariance = function(var_args) {
- var sampleSize = arguments.length;
- if (sampleSize < 2) {
- return 0;
- }
-
- var mean = goog.math.average.apply(null, arguments);
- var variance =
- goog.math.sum.apply(null, goog.array.map(arguments, function(val) {
- return Math.pow(val - mean, 2);
- })) / (sampleSize - 1);
-
- return variance;
-};
-
-
-/**
- * Returns the sample standard deviation of the arguments. For a definition of
- * sample standard deviation, see e.g.
- * http://en.wikipedia.org/wiki/Standard_deviation
- * @param {...number} var_args Number samples to analyze.
- * @return {number} The sample standard deviation of the arguments (0 if fewer
- * than two samples were provided, or {@code NaN} if any of the samples is
- * not a valid number).
- */
-goog.math.standardDeviation = function(var_args) {
- return Math.sqrt(goog.math.sampleVariance.apply(null, arguments));
-};
-
-
-/**
- * Returns whether the supplied number represents an integer, i.e. that is has
- * no fractional component. No range-checking is performed on the number.
- * @param {number} num The number to test.
- * @return {boolean} Whether {@code num} is an integer.
- */
-goog.math.isInt = function(num) {
- return isFinite(num) && num % 1 == 0;
-};
-
-
-/**
- * Returns whether the supplied number is finite and not NaN.
- * @param {number} num The number to test.
- * @return {boolean} Whether {@code num} is a finite number.
- */
-goog.math.isFiniteNumber = function(num) {
- return isFinite(num) && !isNaN(num);
-};
-
-
-/**
- * @param {number} num The number to test.
- * @return {boolean} Whether it is negative zero.
- */
-goog.math.isNegativeZero = function(num) {
- return num == 0 && 1 / num < 0;
-};
-
-
-/**
- * Returns the precise value of floor(log10(num)).
- * Simpler implementations didn't work because of floating point rounding
- * errors. For example
- * <ul>
- * <li>Math.floor(Math.log(num) / Math.LN10) is off by one for num == 1e+3.
- * <li>Math.floor(Math.log(num) * Math.LOG10E) is off by one for num == 1e+15.
- * <li>Math.floor(Math.log10(num)) is off by one for num == 1e+15 - 1.
- * </ul>
- * @param {number} num A floating point number.
- * @return {number} Its logarithm to base 10 rounded down to the nearest
- * integer if num > 0. -Infinity if num == 0. NaN if num < 0.
- */
-goog.math.log10Floor = function(num) {
- if (num > 0) {
- var x = Math.round(Math.log(num) * Math.LOG10E);
- return x - (parseFloat('1e' + x) > num ? 1 : 0);
- }
- return num == 0 ? -Infinity : NaN;
-};
-
-
-/**
- * A tweaked variant of {@code Math.floor} which tolerates if the passed number
- * is infinitesimally smaller than the closest integer. It often happens with
- * the results of floating point calculations because of the finite precision
- * of the intermediate results. For example {@code Math.floor(Math.log(1000) /
- * Math.LN10) == 2}, not 3 as one would expect.
- * @param {number} num A number.
- * @param {number=} opt_epsilon An infinitesimally small positive number, the
- * rounding error to tolerate.
- * @return {number} The largest integer less than or equal to {@code num}.
- */
-goog.math.safeFloor = function(num, opt_epsilon) {
- goog.asserts.assert(!goog.isDef(opt_epsilon) || opt_epsilon > 0);
- return Math.floor(num + (opt_epsilon || 2e-15));
-};
-
-
-/**
- * A tweaked variant of {@code Math.ceil}. See {@code goog.math.safeFloor} for
- * details.
- * @param {number} num A number.
- * @param {number=} opt_epsilon An infinitesimally small positive number, the
- * rounding error to tolerate.
- * @return {number} The smallest integer greater than or equal to {@code num}.
- */
-goog.math.safeCeil = function(num, opt_epsilon) {
- goog.asserts.assert(!goog.isDef(opt_epsilon) || opt_epsilon > 0);
- return Math.ceil(num - (opt_epsilon || 2e-15));
-};
diff --git a/assets/viz/1/goog/math/size.js b/assets/viz/1/goog/math/size.js
deleted file mode 100644
index f5c379b..0000000
--- a/assets/viz/1/goog/math/size.js
+++ /dev/null
@@ -1,227 +0,0 @@
-// Copyright 2007 The Closure Library Authors. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS-IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/**
- * @fileoverview A utility class for representing two-dimensional sizes.
- * @author brenneman@google.com (Shawn Brenneman)
- */
-
-
-goog.provide('goog.math.Size');
-
-
-
-/**
- * Class for representing sizes consisting of a width and height. Undefined
- * width and height support is deprecated and results in compiler warning.
- * @param {number} width Width.
- * @param {number} height Height.
- * @struct
- * @constructor
- */
-goog.math.Size = function(width, height) {
- /**
- * Width
- * @type {number}
- */
- this.width = width;
-
- /**
- * Height
- * @type {number}
- */
- this.height = height;
-};
-
-
-/**
- * Compares sizes for equality.
- * @param {goog.math.Size} a A Size.
- * @param {goog.math.Size} b A Size.
- * @return {boolean} True iff the sizes have equal widths and equal
- * heights, or if both are null.
- */
-goog.math.Size.equals = function(a, b) {
- if (a == b) {
- return true;
- }
- if (!a || !b) {
- return false;
- }
- return a.width == b.width && a.height == b.height;
-};
-
-
-/**
- * @return {!goog.math.Size} A new copy of the Size.
- */
-goog.math.Size.prototype.clone = function() {
- return new goog.math.Size(this.width, this.height);
-};
-
-
-if (goog.DEBUG) {
- /**
- * Returns a nice string representing size.
- * @return {string} In the form (50 x 73).
- * @override
- */
- goog.math.Size.prototype.toString = function() {
- return '(' + this.width + ' x ' + this.height + ')';
- };
-}
-
-
-/**
- * @return {number} The longer of the two dimensions in the size.
- */
-goog.math.Size.prototype.getLongest = function() {
- return Math.max(this.width, this.height);
-};
-
-
-/**
- * @return {number} The shorter of the two dimensions in the size.
- */
-goog.math.Size.prototype.getShortest = function() {
- return Math.min(this.width, this.height);
-};
-
-
-/**
- * @return {number} The area of the size (width * height).
- */
-goog.math.Size.prototype.area = function() {
- return this.width * this.height;
-};
-
-
-/**
- * @return {number} The perimeter of the size (width + height) * 2.
- */
-goog.math.Size.prototype.perimeter = function() {
- return (this.width + this.height) * 2;
-};
-
-
-/**
- * @return {number} The ratio of the size's width to its height.
- */
-goog.math.Size.prototype.aspectRatio = function() {
- return this.width / this.height;
-};
-
-
-/**
- * @return {boolean} True if the size has zero area, false if both dimensions
- * are non-zero numbers.
- */
-goog.math.Size.prototype.isEmpty = function() {
- return !this.area();
-};
-
-
-/**
- * Clamps the width and height parameters upward to integer values.
- * @return {!goog.math.Size} This size with ceil'd components.
- */
-goog.math.Size.prototype.ceil = function() {
- this.width = Math.ceil(this.width);
- this.height = Math.ceil(this.height);
- return this;
-};
-
-
-/**
- * @param {!goog.math.Size} target The target size.
- * @return {boolean} True if this Size is the same size or smaller than the
- * target size in both dimensions.
- */
-goog.math.Size.prototype.fitsInside = function(target) {
- return this.width <= target.width && this.height <= target.height;
-};
-
-
-/**
- * Clamps the width and height parameters downward to integer values.
- * @return {!goog.math.Size} This size with floored components.
- */
-goog.math.Size.prototype.floor = function() {
- this.width = Math.floor(this.width);
- this.height = Math.floor(this.height);
- return this;
-};
-
-
-/**
- * Rounds the width and height parameters to integer values.
- * @return {!goog.math.Size} This size with rounded components.
- */
-goog.math.Size.prototype.round = function() {
- this.width = Math.round(this.width);
- this.height = Math.round(this.height);
- return this;
-};
-
-
-/**
- * Scales this size by the given scale factors. The width and height are scaled
- * by {@code sx} and {@code opt_sy} respectively. If {@code opt_sy} is not
- * given, then {@code sx} is used for both the width and height.
- * @param {number} sx The scale factor to use for the width.
- * @param {number=} opt_sy The scale factor to use for the height.
- * @return {!goog.math.Size} This Size object after scaling.
- */
-goog.math.Size.prototype.scale = function(sx, opt_sy) {
- var sy = goog.isNumber(opt_sy) ? opt_sy : sx;
- this.width *= sx;
- this.height *= sy;
- return this;
-};
-
-
-/**
- * Uniformly scales the size to perfectly cover the dimensions of a given size.
- * If the size is already larger than the target, it will be scaled down to the
- * minimum size at which it still covers the entire target. The original aspect
- * ratio will be preserved.
- *
- * This function assumes that both Sizes contain strictly positive dimensions.
- * @param {!goog.math.Size} target The target size.
- * @return {!goog.math.Size} This Size object, after optional scaling.
- */
-goog.math.Size.prototype.scaleToCover = function(target) {
- var s = this.aspectRatio() <= target.aspectRatio() ?
- target.width / this.width :
- target.height / this.height;
-
- return this.scale(s);
-};
-
-
-/**
- * Uniformly scales the size to fit inside the dimensions of a given size. The
- * original aspect ratio will be preserved.
- *
- * This function assumes that both Sizes contain strictly positive dimensions.
- * @param {!goog.math.Size} target The target size.
- * @return {!goog.math.Size} This Size object, after optional scaling.
- */
-goog.math.Size.prototype.scaleToFit = function(target) {
- var s = this.aspectRatio() > target.aspectRatio() ?
- target.width / this.width :
- target.height / this.height;
-
- return this.scale(s);
-};