summaryrefslogtreecommitdiff
path: root/src/assets/viz/1/goog/math/long.js
diff options
context:
space:
mode:
Diffstat (limited to 'src/assets/viz/1/goog/math/long.js')
-rw-r--r--src/assets/viz/1/goog/math/long.js843
1 files changed, 0 insertions, 843 deletions
diff --git a/src/assets/viz/1/goog/math/long.js b/src/assets/viz/1/goog/math/long.js
deleted file mode 100644
index a43ea3f..0000000
--- a/src/assets/viz/1/goog/math/long.js
+++ /dev/null
@@ -1,843 +0,0 @@
-// Copyright 2009 The Closure Library Authors. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS-IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/**
- * @fileoverview Defines a Long class for representing a 64-bit two's-complement
- * integer value, which faithfully simulates the behavior of a Java "long". This
- * implementation is derived from LongLib in GWT.
- *
- */
-
-goog.provide('goog.math.Long');
-
-goog.require('goog.reflect');
-
-
-
-/**
- * Constructs a 64-bit two's-complement integer, given its low and high 32-bit
- * values as *signed* integers. See the from* functions below for more
- * convenient ways of constructing Longs.
- *
- * The internal representation of a long is the two given signed, 32-bit values.
- * We use 32-bit pieces because these are the size of integers on which
- * Javascript performs bit-operations. For operations like addition and
- * multiplication, we split each number into 16-bit pieces, which can easily be
- * multiplied within Javascript's floating-point representation without overflow
- * or change in sign.
- *
- * In the algorithms below, we frequently reduce the negative case to the
- * positive case by negating the input(s) and then post-processing the result.
- * Note that we must ALWAYS check specially whether those values are MIN_VALUE
- * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
- * a positive number, it overflows back into a negative). Not handling this
- * case would often result in infinite recursion.
- *
- * @param {number} low The low (signed) 32 bits of the long.
- * @param {number} high The high (signed) 32 bits of the long.
- * @struct
- * @constructor
- * @final
- */
-goog.math.Long = function(low, high) {
- /**
- * @type {number}
- * @private
- */
- this.low_ = low | 0; // force into 32 signed bits.
-
- /**
- * @type {number}
- * @private
- */
- this.high_ = high | 0; // force into 32 signed bits.
-};
-
-
-// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
-// from* methods on which they depend.
-
-
-/**
- * A cache of the Long representations of small integer values.
- * @type {!Object<number, !goog.math.Long>}
- * @private
- */
-goog.math.Long.IntCache_ = {};
-
-
-/**
- * A cache of the Long representations of common values.
- * @type {!Object<goog.math.Long.ValueCacheId_, !goog.math.Long>}
- * @private
- */
-goog.math.Long.valueCache_ = {};
-
-
-/**
- * Returns a Long representing the given (32-bit) integer value.
- * @param {number} value The 32-bit integer in question.
- * @return {!goog.math.Long} The corresponding Long value.
- */
-goog.math.Long.fromInt = function(value) {
- if (-128 <= value && value < 128) {
- return goog.reflect.cache(goog.math.Long.IntCache_, value, function(val) {
- return new goog.math.Long(val | 0, val < 0 ? -1 : 0);
- });
- } else {
- return new goog.math.Long(value | 0, value < 0 ? -1 : 0);
- }
-};
-
-
-/**
- * Returns a Long representing the given value.
- * NaN will be returned as zero. Infinity is converted to max value and
- * -Infinity to min value.
- * @param {number} value The number in question.
- * @return {!goog.math.Long} The corresponding Long value.
- */
-goog.math.Long.fromNumber = function(value) {
- if (isNaN(value)) {
- return goog.math.Long.getZero();
- } else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) {
- return goog.math.Long.getMinValue();
- } else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) {
- return goog.math.Long.getMaxValue();
- } else if (value < 0) {
- return goog.math.Long.fromNumber(-value).negate();
- } else {
- return new goog.math.Long(
- (value % goog.math.Long.TWO_PWR_32_DBL_) | 0,
- (value / goog.math.Long.TWO_PWR_32_DBL_) | 0);
- }
-};
-
-
-/**
- * Returns a Long representing the 64-bit integer that comes by concatenating
- * the given high and low bits. Each is assumed to use 32 bits.
- * @param {number} lowBits The low 32-bits.
- * @param {number} highBits The high 32-bits.
- * @return {!goog.math.Long} The corresponding Long value.
- */
-goog.math.Long.fromBits = function(lowBits, highBits) {
- return new goog.math.Long(lowBits, highBits);
-};
-
-
-/**
- * Returns a Long representation of the given string, written using the given
- * radix.
- * @param {string} str The textual representation of the Long.
- * @param {number=} opt_radix The radix in which the text is written.
- * @return {!goog.math.Long} The corresponding Long value.
- */
-goog.math.Long.fromString = function(str, opt_radix) {
- if (str.length == 0) {
- throw Error('number format error: empty string');
- }
-
- var radix = opt_radix || 10;
- if (radix < 2 || 36 < radix) {
- throw Error('radix out of range: ' + radix);
- }
-
- if (str.charAt(0) == '-') {
- return goog.math.Long.fromString(str.substring(1), radix).negate();
- } else if (str.indexOf('-') >= 0) {
- throw Error('number format error: interior "-" character: ' + str);
- }
-
- // Do several (8) digits each time through the loop, so as to
- // minimize the calls to the very expensive emulated div.
- var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8));
-
- var result = goog.math.Long.getZero();
- for (var i = 0; i < str.length; i += 8) {
- var size = Math.min(8, str.length - i);
- var value = parseInt(str.substring(i, i + size), radix);
- if (size < 8) {
- var power = goog.math.Long.fromNumber(Math.pow(radix, size));
- result = result.multiply(power).add(goog.math.Long.fromNumber(value));
- } else {
- result = result.multiply(radixToPower);
- result = result.add(goog.math.Long.fromNumber(value));
- }
- }
- return result;
-};
-
-
-// NOTE: the compiler should inline these constant values below and then remove
-// these variables, so there should be no runtime penalty for these.
-
-
-/**
- * Number used repeated below in calculations. This must appear before the
- * first call to any from* function below.
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16;
-
-
-/**
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_32_DBL_ =
- goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
-
-
-/**
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_64_DBL_ =
- goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_;
-
-
-/**
- * @type {number}
- * @private
- */
-goog.math.Long.TWO_PWR_63_DBL_ = goog.math.Long.TWO_PWR_64_DBL_ / 2;
-
-
-/**
- * @return {!goog.math.Long}
- * @public
- */
-goog.math.Long.getZero = function() {
- return goog.reflect.cache(
- goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.ZERO,
- function() { return goog.math.Long.fromInt(0); });
-};
-
-
-/**
- * @return {!goog.math.Long}
- * @public
- */
-goog.math.Long.getOne = function() {
- return goog.reflect.cache(
- goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.ONE,
- function() { return goog.math.Long.fromInt(1); });
-};
-
-
-/**
- * @return {!goog.math.Long}
- * @public
- */
-goog.math.Long.getNegOne = function() {
- return goog.reflect.cache(
- goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.NEG_ONE,
- function() { return goog.math.Long.fromInt(-1); });
-};
-
-
-/**
- * @return {!goog.math.Long}
- * @public
- */
-goog.math.Long.getMaxValue = function() {
- return goog.reflect.cache(
- goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MAX_VALUE,
- function() {
- return goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0);
- });
-};
-
-
-/**
- * @return {!goog.math.Long}
- * @public
- */
-goog.math.Long.getMinValue = function() {
- return goog.reflect.cache(
- goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MIN_VALUE,
- function() { return goog.math.Long.fromBits(0, 0x80000000 | 0); });
-};
-
-
-/**
- * @return {!goog.math.Long}
- * @public
- */
-goog.math.Long.getTwoPwr24 = function() {
- return goog.reflect.cache(
- goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.TWO_PWR_24,
- function() { return goog.math.Long.fromInt(1 << 24); });
-};
-
-
-/** @return {number} The value, assuming it is a 32-bit integer. */
-goog.math.Long.prototype.toInt = function() {
- return this.low_;
-};
-
-
-/** @return {number} The closest floating-point representation to this value. */
-goog.math.Long.prototype.toNumber = function() {
- return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ +
- this.getLowBitsUnsigned();
-};
-
-
-/**
- * @param {number=} opt_radix The radix in which the text should be written.
- * @return {string} The textual representation of this value.
- * @override
- */
-goog.math.Long.prototype.toString = function(opt_radix) {
- var radix = opt_radix || 10;
- if (radix < 2 || 36 < radix) {
- throw Error('radix out of range: ' + radix);
- }
-
- if (this.isZero()) {
- return '0';
- }
-
- if (this.isNegative()) {
- if (this.equals(goog.math.Long.getMinValue())) {
- // We need to change the Long value before it can be negated, so we remove
- // the bottom-most digit in this base and then recurse to do the rest.
- var radixLong = goog.math.Long.fromNumber(radix);
- var div = this.div(radixLong);
- var rem = div.multiply(radixLong).subtract(this);
- return div.toString(radix) + rem.toInt().toString(radix);
- } else {
- return '-' + this.negate().toString(radix);
- }
- }
-
- // Do several (6) digits each time through the loop, so as to
- // minimize the calls to the very expensive emulated div.
- var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6));
-
- var rem = this;
- var result = '';
- while (true) {
- var remDiv = rem.div(radixToPower);
- // The right shifting fixes negative values in the case when
- // intval >= 2^31; for more details see
- // https://github.com/google/closure-library/pull/498
- var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0;
- var digits = intval.toString(radix);
-
- rem = remDiv;
- if (rem.isZero()) {
- return digits + result;
- } else {
- while (digits.length < 6) {
- digits = '0' + digits;
- }
- result = '' + digits + result;
- }
- }
-};
-
-
-/** @return {number} The high 32-bits as a signed value. */
-goog.math.Long.prototype.getHighBits = function() {
- return this.high_;
-};
-
-
-/** @return {number} The low 32-bits as a signed value. */
-goog.math.Long.prototype.getLowBits = function() {
- return this.low_;
-};
-
-
-/** @return {number} The low 32-bits as an unsigned value. */
-goog.math.Long.prototype.getLowBitsUnsigned = function() {
- return (this.low_ >= 0) ? this.low_ :
- goog.math.Long.TWO_PWR_32_DBL_ + this.low_;
-};
-
-
-/**
- * @return {number} Returns the number of bits needed to represent the absolute
- * value of this Long.
- */
-goog.math.Long.prototype.getNumBitsAbs = function() {
- if (this.isNegative()) {
- if (this.equals(goog.math.Long.getMinValue())) {
- return 64;
- } else {
- return this.negate().getNumBitsAbs();
- }
- } else {
- var val = this.high_ != 0 ? this.high_ : this.low_;
- for (var bit = 31; bit > 0; bit--) {
- if ((val & (1 << bit)) != 0) {
- break;
- }
- }
- return this.high_ != 0 ? bit + 33 : bit + 1;
- }
-};
-
-
-/** @return {boolean} Whether this value is zero. */
-goog.math.Long.prototype.isZero = function() {
- return this.high_ == 0 && this.low_ == 0;
-};
-
-
-/** @return {boolean} Whether this value is negative. */
-goog.math.Long.prototype.isNegative = function() {
- return this.high_ < 0;
-};
-
-
-/** @return {boolean} Whether this value is odd. */
-goog.math.Long.prototype.isOdd = function() {
- return (this.low_ & 1) == 1;
-};
-
-
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long equals the other.
- */
-goog.math.Long.prototype.equals = function(other) {
- return (this.high_ == other.high_) && (this.low_ == other.low_);
-};
-
-
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long does not equal the other.
- */
-goog.math.Long.prototype.notEquals = function(other) {
- return (this.high_ != other.high_) || (this.low_ != other.low_);
-};
-
-
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long is less than the other.
- */
-goog.math.Long.prototype.lessThan = function(other) {
- return this.compare(other) < 0;
-};
-
-
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long is less than or equal to the other.
- */
-goog.math.Long.prototype.lessThanOrEqual = function(other) {
- return this.compare(other) <= 0;
-};
-
-
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long is greater than the other.
- */
-goog.math.Long.prototype.greaterThan = function(other) {
- return this.compare(other) > 0;
-};
-
-
-/**
- * @param {goog.math.Long} other Long to compare against.
- * @return {boolean} Whether this Long is greater than or equal to the other.
- */
-goog.math.Long.prototype.greaterThanOrEqual = function(other) {
- return this.compare(other) >= 0;
-};
-
-
-/**
- * Compares this Long with the given one.
- * @param {goog.math.Long} other Long to compare against.
- * @return {number} 0 if they are the same, 1 if the this is greater, and -1
- * if the given one is greater.
- */
-goog.math.Long.prototype.compare = function(other) {
- if (this.equals(other)) {
- return 0;
- }
-
- var thisNeg = this.isNegative();
- var otherNeg = other.isNegative();
- if (thisNeg && !otherNeg) {
- return -1;
- }
- if (!thisNeg && otherNeg) {
- return 1;
- }
-
- // at this point, the signs are the same, so subtraction will not overflow
- if (this.subtract(other).isNegative()) {
- return -1;
- } else {
- return 1;
- }
-};
-
-
-/** @return {!goog.math.Long} The negation of this value. */
-goog.math.Long.prototype.negate = function() {
- if (this.equals(goog.math.Long.getMinValue())) {
- return goog.math.Long.getMinValue();
- } else {
- return this.not().add(goog.math.Long.getOne());
- }
-};
-
-
-/**
- * Returns the sum of this and the given Long.
- * @param {goog.math.Long} other Long to add to this one.
- * @return {!goog.math.Long} The sum of this and the given Long.
- */
-goog.math.Long.prototype.add = function(other) {
- // Divide each number into 4 chunks of 16 bits, and then sum the chunks.
-
- var a48 = this.high_ >>> 16;
- var a32 = this.high_ & 0xFFFF;
- var a16 = this.low_ >>> 16;
- var a00 = this.low_ & 0xFFFF;
-
- var b48 = other.high_ >>> 16;
- var b32 = other.high_ & 0xFFFF;
- var b16 = other.low_ >>> 16;
- var b00 = other.low_ & 0xFFFF;
-
- var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
- c00 += a00 + b00;
- c16 += c00 >>> 16;
- c00 &= 0xFFFF;
- c16 += a16 + b16;
- c32 += c16 >>> 16;
- c16 &= 0xFFFF;
- c32 += a32 + b32;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c48 += a48 + b48;
- c48 &= 0xFFFF;
- return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
-};
-
-
-/**
- * Returns the difference of this and the given Long.
- * @param {goog.math.Long} other Long to subtract from this.
- * @return {!goog.math.Long} The difference of this and the given Long.
- */
-goog.math.Long.prototype.subtract = function(other) {
- return this.add(other.negate());
-};
-
-
-/**
- * Returns the product of this and the given long.
- * @param {goog.math.Long} other Long to multiply with this.
- * @return {!goog.math.Long} The product of this and the other.
- */
-goog.math.Long.prototype.multiply = function(other) {
- if (this.isZero()) {
- return goog.math.Long.getZero();
- } else if (other.isZero()) {
- return goog.math.Long.getZero();
- }
-
- if (this.equals(goog.math.Long.getMinValue())) {
- return other.isOdd() ? goog.math.Long.getMinValue() :
- goog.math.Long.getZero();
- } else if (other.equals(goog.math.Long.getMinValue())) {
- return this.isOdd() ? goog.math.Long.getMinValue() :
- goog.math.Long.getZero();
- }
-
- if (this.isNegative()) {
- if (other.isNegative()) {
- return this.negate().multiply(other.negate());
- } else {
- return this.negate().multiply(other).negate();
- }
- } else if (other.isNegative()) {
- return this.multiply(other.negate()).negate();
- }
-
- // If both longs are small, use float multiplication
- if (this.lessThan(goog.math.Long.getTwoPwr24()) &&
- other.lessThan(goog.math.Long.getTwoPwr24())) {
- return goog.math.Long.fromNumber(this.toNumber() * other.toNumber());
- }
-
- // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
- // We can skip products that would overflow.
-
- var a48 = this.high_ >>> 16;
- var a32 = this.high_ & 0xFFFF;
- var a16 = this.low_ >>> 16;
- var a00 = this.low_ & 0xFFFF;
-
- var b48 = other.high_ >>> 16;
- var b32 = other.high_ & 0xFFFF;
- var b16 = other.low_ >>> 16;
- var b00 = other.low_ & 0xFFFF;
-
- var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
- c00 += a00 * b00;
- c16 += c00 >>> 16;
- c00 &= 0xFFFF;
- c16 += a16 * b00;
- c32 += c16 >>> 16;
- c16 &= 0xFFFF;
- c16 += a00 * b16;
- c32 += c16 >>> 16;
- c16 &= 0xFFFF;
- c32 += a32 * b00;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c32 += a16 * b16;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c32 += a00 * b32;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
- c48 &= 0xFFFF;
- return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
-};
-
-
-/**
- * Returns this Long divided by the given one.
- * @param {goog.math.Long} other Long by which to divide.
- * @return {!goog.math.Long} This Long divided by the given one.
- */
-goog.math.Long.prototype.div = function(other) {
- if (other.isZero()) {
- throw Error('division by zero');
- } else if (this.isZero()) {
- return goog.math.Long.getZero();
- }
-
- if (this.equals(goog.math.Long.getMinValue())) {
- if (other.equals(goog.math.Long.getOne()) ||
- other.equals(goog.math.Long.getNegOne())) {
- return goog.math.Long.getMinValue(); // recall -MIN_VALUE == MIN_VALUE
- } else if (other.equals(goog.math.Long.getMinValue())) {
- return goog.math.Long.getOne();
- } else {
- // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
- var halfThis = this.shiftRight(1);
- var approx = halfThis.div(other).shiftLeft(1);
- if (approx.equals(goog.math.Long.getZero())) {
- return other.isNegative() ? goog.math.Long.getOne() :
- goog.math.Long.getNegOne();
- } else {
- var rem = this.subtract(other.multiply(approx));
- var result = approx.add(rem.div(other));
- return result;
- }
- }
- } else if (other.equals(goog.math.Long.getMinValue())) {
- return goog.math.Long.getZero();
- }
-
- if (this.isNegative()) {
- if (other.isNegative()) {
- return this.negate().div(other.negate());
- } else {
- return this.negate().div(other).negate();
- }
- } else if (other.isNegative()) {
- return this.div(other.negate()).negate();
- }
-
- // Repeat the following until the remainder is less than other: find a
- // floating-point that approximates remainder / other *from below*, add this
- // into the result, and subtract it from the remainder. It is critical that
- // the approximate value is less than or equal to the real value so that the
- // remainder never becomes negative.
- var res = goog.math.Long.getZero();
- var rem = this;
- while (rem.greaterThanOrEqual(other)) {
- // Approximate the result of division. This may be a little greater or
- // smaller than the actual value.
- var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
-
- // We will tweak the approximate result by changing it in the 48-th digit or
- // the smallest non-fractional digit, whichever is larger.
- var log2 = Math.ceil(Math.log(approx) / Math.LN2);
- var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
-
- // Decrease the approximation until it is smaller than the remainder. Note
- // that if it is too large, the product overflows and is negative.
- var approxRes = goog.math.Long.fromNumber(approx);
- var approxRem = approxRes.multiply(other);
- while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
- approx -= delta;
- approxRes = goog.math.Long.fromNumber(approx);
- approxRem = approxRes.multiply(other);
- }
-
- // We know the answer can't be zero... and actually, zero would cause
- // infinite recursion since we would make no progress.
- if (approxRes.isZero()) {
- approxRes = goog.math.Long.getOne();
- }
-
- res = res.add(approxRes);
- rem = rem.subtract(approxRem);
- }
- return res;
-};
-
-
-/**
- * Returns this Long modulo the given one.
- * @param {goog.math.Long} other Long by which to mod.
- * @return {!goog.math.Long} This Long modulo the given one.
- */
-goog.math.Long.prototype.modulo = function(other) {
- return this.subtract(this.div(other).multiply(other));
-};
-
-
-/** @return {!goog.math.Long} The bitwise-NOT of this value. */
-goog.math.Long.prototype.not = function() {
- return goog.math.Long.fromBits(~this.low_, ~this.high_);
-};
-
-
-/**
- * Returns the bitwise-AND of this Long and the given one.
- * @param {goog.math.Long} other The Long with which to AND.
- * @return {!goog.math.Long} The bitwise-AND of this and the other.
- */
-goog.math.Long.prototype.and = function(other) {
- return goog.math.Long.fromBits(
- this.low_ & other.low_, this.high_ & other.high_);
-};
-
-
-/**
- * Returns the bitwise-OR of this Long and the given one.
- * @param {goog.math.Long} other The Long with which to OR.
- * @return {!goog.math.Long} The bitwise-OR of this and the other.
- */
-goog.math.Long.prototype.or = function(other) {
- return goog.math.Long.fromBits(
- this.low_ | other.low_, this.high_ | other.high_);
-};
-
-
-/**
- * Returns the bitwise-XOR of this Long and the given one.
- * @param {goog.math.Long} other The Long with which to XOR.
- * @return {!goog.math.Long} The bitwise-XOR of this and the other.
- */
-goog.math.Long.prototype.xor = function(other) {
- return goog.math.Long.fromBits(
- this.low_ ^ other.low_, this.high_ ^ other.high_);
-};
-
-
-/**
- * Returns this Long with bits shifted to the left by the given amount.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Long} This shifted to the left by the given amount.
- */
-goog.math.Long.prototype.shiftLeft = function(numBits) {
- numBits &= 63;
- if (numBits == 0) {
- return this;
- } else {
- var low = this.low_;
- if (numBits < 32) {
- var high = this.high_;
- return goog.math.Long.fromBits(
- low << numBits, (high << numBits) | (low >>> (32 - numBits)));
- } else {
- return goog.math.Long.fromBits(0, low << (numBits - 32));
- }
- }
-};
-
-
-/**
- * Returns this Long with bits shifted to the right by the given amount.
- * The new leading bits match the current sign bit.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Long} This shifted to the right by the given amount.
- */
-goog.math.Long.prototype.shiftRight = function(numBits) {
- numBits &= 63;
- if (numBits == 0) {
- return this;
- } else {
- var high = this.high_;
- if (numBits < 32) {
- var low = this.low_;
- return goog.math.Long.fromBits(
- (low >>> numBits) | (high << (32 - numBits)), high >> numBits);
- } else {
- return goog.math.Long.fromBits(
- high >> (numBits - 32), high >= 0 ? 0 : -1);
- }
- }
-};
-
-
-/**
- * Returns this Long with bits shifted to the right by the given amount, with
- * zeros placed into the new leading bits.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Long} This shifted to the right by the given amount, with
- * zeros placed into the new leading bits.
- */
-goog.math.Long.prototype.shiftRightUnsigned = function(numBits) {
- numBits &= 63;
- if (numBits == 0) {
- return this;
- } else {
- var high = this.high_;
- if (numBits < 32) {
- var low = this.low_;
- return goog.math.Long.fromBits(
- (low >>> numBits) | (high << (32 - numBits)), high >>> numBits);
- } else if (numBits == 32) {
- return goog.math.Long.fromBits(high, 0);
- } else {
- return goog.math.Long.fromBits(high >>> (numBits - 32), 0);
- }
- }
-};
-
-
-/**
- * @enum {number} Ids of commonly requested Long instances.
- * @private
- */
-goog.math.Long.ValueCacheId_ = {
- MAX_VALUE: 1,
- MIN_VALUE: 2,
- ZERO: 3,
- ONE: 4,
- NEG_ONE: 5,
- TWO_PWR_24: 6
-};