summaryrefslogtreecommitdiff
path: root/static/src/_posts/2021-03-04-conditionals-in-ginger-errata.md
diff options
context:
space:
mode:
Diffstat (limited to 'static/src/_posts/2021-03-04-conditionals-in-ginger-errata.md')
-rw-r--r--static/src/_posts/2021-03-04-conditionals-in-ginger-errata.md195
1 files changed, 0 insertions, 195 deletions
diff --git a/static/src/_posts/2021-03-04-conditionals-in-ginger-errata.md b/static/src/_posts/2021-03-04-conditionals-in-ginger-errata.md
deleted file mode 100644
index b4c0007..0000000
--- a/static/src/_posts/2021-03-04-conditionals-in-ginger-errata.md
+++ /dev/null
@@ -1,195 +0,0 @@
----
-title: >-
- Conditionals in Ginger, Errata
-description: >-
- Too clever by half.
-series: ginger
-tags: tech
----
-
-After publishing the last post in the series I walked away from my computer
-feeling that I was very clever and had made a good post. This was incorrect.
-
-To summarize [the previous post][prev], it's not obvious which is the best way
-to structure conditionals in a graphical programming language. My favorite
-solution looked something like this:
-
-```
- in -> } -> } -if-> } -0-> } -add-> out
-in -1-> } -> } } } -1-> } -sub-> out
-in -0-> } }
- }
- in -lt-> }
-```
-
-Essentially an `if` operator which accepts a value and a boolean, and which has
-two output edges. If the boolean is true then the input value is sent along the
-first output edge, and if it's false it's sent along the second.
-
-This structure is not possible, given the properties of ginger graphs that have
-been laid out in [other posts in the series][other].
-
-## Nodes, Tuples, and Edges
-
-A ginger graph, as it has been presented so far, is composed of these three
-elements. A node has a value, and its value is unique to the graph; if two nodes
-have the same value then they are the same node. Edges connect two nodes or
-tuples together, and have a value and direction. Tuples are, in essence, a node
-whose value is its input edges.
-
-The `if` operation above lies on an edge, not a node or tuple. It cannot have
-multiple output edges, since it cannot have any edges at all. It _is_ an edge.
-
-So it's back to the drawing board, to some extent. But luckily I've got some
-more ideas in my back pocket.
-
-## Forks and Junctions
-
-In an older conception of ginger there was no tuple, but instead there were
-forks and junctions. A junction was essentially the same as a tuple, just named
-differently: a node whose value is its input edges. A fork was just the
-opposite, a node whose value is its output edges. Junctions and forks naturally
-complimented each other, but ultimately I didn't find forks to be useful for
-much because there weren't cases where it was necessary to have a single edge be
-split across multiple output edges directly; any case which appeared to require
-a fork could be satisfied by directing the edge into a 1-tuple and using the
-output edges of the 1-tuple.
-
-But now we have such a case. The 1-tuple won't work, because the `if` operator
-would only see the 1-tuple, not its edges. It could be supposed that the graph
-interpreter could say that an `if` operation must be followed by a 1-tuple, and
-that the 1-tuple's output edges have a special meaning in that circumstance. But
-making the output edges of a 1-tuple have different meaning in different
-circumstances isn't very elegant.
-
-So a fork might be just the thing here. For the example I will represent a
-fork as the opposite of a tuple: a vertical column of `{` characters.
-
-```
- in -> } -> } -if-> { -0-> } -add-> out
-in -1-> } -> } } { -1-> } -sub-> out
-in -0-> } }
- }
- in -lt-> }
-```
-
-It _looks_ elegant, which is nice. I am curious though if there's any other
-possible use-case where a fork might be useful... if there's not then it seems
-odd to introduce an entire new element just to support a single operation. Why
-not just make that operation itself the new element?
-
-## Switch it Up
-
-In most conceptions of a flowchart that I've seen a conditional is usually
-represented as a node with a different shape than the other nodes (often a
-diamond). Ginger could borrow this idea for itself, and declare a new graph
-element, alongside nodes, tuples, and edges, called a switch.
-
-Let's say a switch is simply represented by a `-<>`, and acts like a node in all
-aspects except that it has no value and is not unique to the graph.
-
-The example presented in the [previous post][prev] would look something like
-this:
-
-```
- in -> } -> } -<> -0-> } -add-> out
-in -1-> } -> } } -1-> } -sub-> out
-in -0-> } }
- }
- in -lt-> }
-```
-
-This isn't the _worst_. Like the fork it's adding a new element, but that
-element's existence is required and its usage is very specific to that
-requirement, whereas the fork's existence is required but ambiguously useful
-outside of that requirement.
-
-On the other hand, there are macros to consider...
-
-## Macrophillic
-
-Ginger will certainly support macros, and as alluded to in the last post I'd
-like even conditional operations to be fair game for those who want to construct
-their own more complex operators. In the context of the switch `-<>` element,
-would someone be able to create something like a pattern matching conditional?
-If the builtin conditional is implemented as a new graph element then it seems
-that the primary way to implement a custom conditional macro will also involve a
-new graph element.
-
-While I'm not flat out opposed to allowing for custom graph elements, I'm
-extremely skeptical that it's necessary, and would like it to be proven
-necessary before considering it. So if we can have a basic conditional, _and_
-custom conditional macros built on top of the same broadly useful element, that
-seems like the better strategy.
-
-So all of that said, it seems I'm leaning towards forks as the better strategy
-in this. But I'd like a different name. "Fork" was nice as being the compliment
-of a "junction", but I like "tuple" way more than "junction" because the term
-applies well both to the structural element _and_ to the transformation that
-element performs (i.e. a tuple element combines its input edges' values into a
-tuple value). But "tuple" and "fork" seem weird together...
-
-## Many Minutes Later...
-
-A brief search of the internet reveals no better word than "fork". A place
-where a tree's trunk splits into two separate trunks is called a "fork". A
-place where a river splits into two separate rivers is called a "fork".
-Similarly with roads. And that _is_ what's happening, from the point of view of
-the graph's structure: it is an element whose only purpose is to denote multiple
-outward edges.
-
-So "fork" it is.
-
-## Other considerations
-
-A 1-tuple is interesting in that it acts essentially as a concatenation of two
-edges. A 1-fork could, theoretically, do the same thing:
-
-```
-a -foo-> } -bar-> b
-
-c -far-> { -boo-> d
-```
-
-The top uses a tuple, the bottom a fork. Each is, conceptually, valid, but I
-don't like that two different elements can be used for the exact same use-case.
-
-A 1-tuple is an established concept in data structures, so I am loath to give it
-up. A 1-fork, on the other hand, doesn't make sense structurally (would you
-point to any random point on a river and call it a "1-fork"?), and fork as a
-whole doesn't really have any analog in the realm of data structures. So I'm
-prepared to declare 1-forks invalid from the viewpoint of the language
-interpreter.
-
-Another consideration: I already expect that there's going to be confusion as to
-when to use a fork and when to use multiple outputs from a node. For example,
-here's a graph which uses a fork:
-
-```
-a -> { -op1-> foo
- { -op2-> bar
-```
-
-and here's a graph which has multiple outputs from the same node:
-
-```
-a -op1-> foo
- -op2-> bar
-```
-
-Each could be interpreted to mean the same thing: "set `foo` to the result of
-passing `a` into `op1`, and set `bar` to the result of passing `a` into `op2`."
-As with the 1-tuple vs 1-fork issue, we have another case where the same
-task might be accomplished with two different patterns. This case is trickier
-though, and I don't have as confident an answer.
-
-I think an interim rule which could be put in place, subject to review later, is
-that multiple edges from a node or tuple indicate that that same value is being
-used for multiple operations, while a fork indicates something specific to the
-operation on its input edge. It's not a pretty rule, but I think it will do.
-
-Stay tuned for next week when I realize that actually all of this is wrong and
-we start over again!
-
-[prev]: {% post_url 2021-03-01-conditionals-in-ginger %}
-[other]: {% post_url 2021-01-09-ginger %}