diff options
Diffstat (limited to 'static/src/assets/viz/1/goog/math/long.js')
-rw-r--r-- | static/src/assets/viz/1/goog/math/long.js | 843 |
1 files changed, 0 insertions, 843 deletions
diff --git a/static/src/assets/viz/1/goog/math/long.js b/static/src/assets/viz/1/goog/math/long.js deleted file mode 100644 index a43ea3f..0000000 --- a/static/src/assets/viz/1/goog/math/long.js +++ /dev/null @@ -1,843 +0,0 @@ -// Copyright 2009 The Closure Library Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS-IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/** - * @fileoverview Defines a Long class for representing a 64-bit two's-complement - * integer value, which faithfully simulates the behavior of a Java "long". This - * implementation is derived from LongLib in GWT. - * - */ - -goog.provide('goog.math.Long'); - -goog.require('goog.reflect'); - - - -/** - * Constructs a 64-bit two's-complement integer, given its low and high 32-bit - * values as *signed* integers. See the from* functions below for more - * convenient ways of constructing Longs. - * - * The internal representation of a long is the two given signed, 32-bit values. - * We use 32-bit pieces because these are the size of integers on which - * Javascript performs bit-operations. For operations like addition and - * multiplication, we split each number into 16-bit pieces, which can easily be - * multiplied within Javascript's floating-point representation without overflow - * or change in sign. - * - * In the algorithms below, we frequently reduce the negative case to the - * positive case by negating the input(s) and then post-processing the result. - * Note that we must ALWAYS check specially whether those values are MIN_VALUE - * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as - * a positive number, it overflows back into a negative). Not handling this - * case would often result in infinite recursion. - * - * @param {number} low The low (signed) 32 bits of the long. - * @param {number} high The high (signed) 32 bits of the long. - * @struct - * @constructor - * @final - */ -goog.math.Long = function(low, high) { - /** - * @type {number} - * @private - */ - this.low_ = low | 0; // force into 32 signed bits. - - /** - * @type {number} - * @private - */ - this.high_ = high | 0; // force into 32 signed bits. -}; - - -// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the -// from* methods on which they depend. - - -/** - * A cache of the Long representations of small integer values. - * @type {!Object<number, !goog.math.Long>} - * @private - */ -goog.math.Long.IntCache_ = {}; - - -/** - * A cache of the Long representations of common values. - * @type {!Object<goog.math.Long.ValueCacheId_, !goog.math.Long>} - * @private - */ -goog.math.Long.valueCache_ = {}; - - -/** - * Returns a Long representing the given (32-bit) integer value. - * @param {number} value The 32-bit integer in question. - * @return {!goog.math.Long} The corresponding Long value. - */ -goog.math.Long.fromInt = function(value) { - if (-128 <= value && value < 128) { - return goog.reflect.cache(goog.math.Long.IntCache_, value, function(val) { - return new goog.math.Long(val | 0, val < 0 ? -1 : 0); - }); - } else { - return new goog.math.Long(value | 0, value < 0 ? -1 : 0); - } -}; - - -/** - * Returns a Long representing the given value. - * NaN will be returned as zero. Infinity is converted to max value and - * -Infinity to min value. - * @param {number} value The number in question. - * @return {!goog.math.Long} The corresponding Long value. - */ -goog.math.Long.fromNumber = function(value) { - if (isNaN(value)) { - return goog.math.Long.getZero(); - } else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) { - return goog.math.Long.getMinValue(); - } else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) { - return goog.math.Long.getMaxValue(); - } else if (value < 0) { - return goog.math.Long.fromNumber(-value).negate(); - } else { - return new goog.math.Long( - (value % goog.math.Long.TWO_PWR_32_DBL_) | 0, - (value / goog.math.Long.TWO_PWR_32_DBL_) | 0); - } -}; - - -/** - * Returns a Long representing the 64-bit integer that comes by concatenating - * the given high and low bits. Each is assumed to use 32 bits. - * @param {number} lowBits The low 32-bits. - * @param {number} highBits The high 32-bits. - * @return {!goog.math.Long} The corresponding Long value. - */ -goog.math.Long.fromBits = function(lowBits, highBits) { - return new goog.math.Long(lowBits, highBits); -}; - - -/** - * Returns a Long representation of the given string, written using the given - * radix. - * @param {string} str The textual representation of the Long. - * @param {number=} opt_radix The radix in which the text is written. - * @return {!goog.math.Long} The corresponding Long value. - */ -goog.math.Long.fromString = function(str, opt_radix) { - if (str.length == 0) { - throw Error('number format error: empty string'); - } - - var radix = opt_radix || 10; - if (radix < 2 || 36 < radix) { - throw Error('radix out of range: ' + radix); - } - - if (str.charAt(0) == '-') { - return goog.math.Long.fromString(str.substring(1), radix).negate(); - } else if (str.indexOf('-') >= 0) { - throw Error('number format error: interior "-" character: ' + str); - } - - // Do several (8) digits each time through the loop, so as to - // minimize the calls to the very expensive emulated div. - var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8)); - - var result = goog.math.Long.getZero(); - for (var i = 0; i < str.length; i += 8) { - var size = Math.min(8, str.length - i); - var value = parseInt(str.substring(i, i + size), radix); - if (size < 8) { - var power = goog.math.Long.fromNumber(Math.pow(radix, size)); - result = result.multiply(power).add(goog.math.Long.fromNumber(value)); - } else { - result = result.multiply(radixToPower); - result = result.add(goog.math.Long.fromNumber(value)); - } - } - return result; -}; - - -// NOTE: the compiler should inline these constant values below and then remove -// these variables, so there should be no runtime penalty for these. - - -/** - * Number used repeated below in calculations. This must appear before the - * first call to any from* function below. - * @type {number} - * @private - */ -goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16; - - -/** - * @type {number} - * @private - */ -goog.math.Long.TWO_PWR_32_DBL_ = - goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_; - - -/** - * @type {number} - * @private - */ -goog.math.Long.TWO_PWR_64_DBL_ = - goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_; - - -/** - * @type {number} - * @private - */ -goog.math.Long.TWO_PWR_63_DBL_ = goog.math.Long.TWO_PWR_64_DBL_ / 2; - - -/** - * @return {!goog.math.Long} - * @public - */ -goog.math.Long.getZero = function() { - return goog.reflect.cache( - goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.ZERO, - function() { return goog.math.Long.fromInt(0); }); -}; - - -/** - * @return {!goog.math.Long} - * @public - */ -goog.math.Long.getOne = function() { - return goog.reflect.cache( - goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.ONE, - function() { return goog.math.Long.fromInt(1); }); -}; - - -/** - * @return {!goog.math.Long} - * @public - */ -goog.math.Long.getNegOne = function() { - return goog.reflect.cache( - goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.NEG_ONE, - function() { return goog.math.Long.fromInt(-1); }); -}; - - -/** - * @return {!goog.math.Long} - * @public - */ -goog.math.Long.getMaxValue = function() { - return goog.reflect.cache( - goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MAX_VALUE, - function() { - return goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0); - }); -}; - - -/** - * @return {!goog.math.Long} - * @public - */ -goog.math.Long.getMinValue = function() { - return goog.reflect.cache( - goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MIN_VALUE, - function() { return goog.math.Long.fromBits(0, 0x80000000 | 0); }); -}; - - -/** - * @return {!goog.math.Long} - * @public - */ -goog.math.Long.getTwoPwr24 = function() { - return goog.reflect.cache( - goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.TWO_PWR_24, - function() { return goog.math.Long.fromInt(1 << 24); }); -}; - - -/** @return {number} The value, assuming it is a 32-bit integer. */ -goog.math.Long.prototype.toInt = function() { - return this.low_; -}; - - -/** @return {number} The closest floating-point representation to this value. */ -goog.math.Long.prototype.toNumber = function() { - return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ + - this.getLowBitsUnsigned(); -}; - - -/** - * @param {number=} opt_radix The radix in which the text should be written. - * @return {string} The textual representation of this value. - * @override - */ -goog.math.Long.prototype.toString = function(opt_radix) { - var radix = opt_radix || 10; - if (radix < 2 || 36 < radix) { - throw Error('radix out of range: ' + radix); - } - - if (this.isZero()) { - return '0'; - } - - if (this.isNegative()) { - if (this.equals(goog.math.Long.getMinValue())) { - // We need to change the Long value before it can be negated, so we remove - // the bottom-most digit in this base and then recurse to do the rest. - var radixLong = goog.math.Long.fromNumber(radix); - var div = this.div(radixLong); - var rem = div.multiply(radixLong).subtract(this); - return div.toString(radix) + rem.toInt().toString(radix); - } else { - return '-' + this.negate().toString(radix); - } - } - - // Do several (6) digits each time through the loop, so as to - // minimize the calls to the very expensive emulated div. - var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6)); - - var rem = this; - var result = ''; - while (true) { - var remDiv = rem.div(radixToPower); - // The right shifting fixes negative values in the case when - // intval >= 2^31; for more details see - // https://github.com/google/closure-library/pull/498 - var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0; - var digits = intval.toString(radix); - - rem = remDiv; - if (rem.isZero()) { - return digits + result; - } else { - while (digits.length < 6) { - digits = '0' + digits; - } - result = '' + digits + result; - } - } -}; - - -/** @return {number} The high 32-bits as a signed value. */ -goog.math.Long.prototype.getHighBits = function() { - return this.high_; -}; - - -/** @return {number} The low 32-bits as a signed value. */ -goog.math.Long.prototype.getLowBits = function() { - return this.low_; -}; - - -/** @return {number} The low 32-bits as an unsigned value. */ -goog.math.Long.prototype.getLowBitsUnsigned = function() { - return (this.low_ >= 0) ? this.low_ : - goog.math.Long.TWO_PWR_32_DBL_ + this.low_; -}; - - -/** - * @return {number} Returns the number of bits needed to represent the absolute - * value of this Long. - */ -goog.math.Long.prototype.getNumBitsAbs = function() { - if (this.isNegative()) { - if (this.equals(goog.math.Long.getMinValue())) { - return 64; - } else { - return this.negate().getNumBitsAbs(); - } - } else { - var val = this.high_ != 0 ? this.high_ : this.low_; - for (var bit = 31; bit > 0; bit--) { - if ((val & (1 << bit)) != 0) { - break; - } - } - return this.high_ != 0 ? bit + 33 : bit + 1; - } -}; - - -/** @return {boolean} Whether this value is zero. */ -goog.math.Long.prototype.isZero = function() { - return this.high_ == 0 && this.low_ == 0; -}; - - -/** @return {boolean} Whether this value is negative. */ -goog.math.Long.prototype.isNegative = function() { - return this.high_ < 0; -}; - - -/** @return {boolean} Whether this value is odd. */ -goog.math.Long.prototype.isOdd = function() { - return (this.low_ & 1) == 1; -}; - - -/** - * @param {goog.math.Long} other Long to compare against. - * @return {boolean} Whether this Long equals the other. - */ -goog.math.Long.prototype.equals = function(other) { - return (this.high_ == other.high_) && (this.low_ == other.low_); -}; - - -/** - * @param {goog.math.Long} other Long to compare against. - * @return {boolean} Whether this Long does not equal the other. - */ -goog.math.Long.prototype.notEquals = function(other) { - return (this.high_ != other.high_) || (this.low_ != other.low_); -}; - - -/** - * @param {goog.math.Long} other Long to compare against. - * @return {boolean} Whether this Long is less than the other. - */ -goog.math.Long.prototype.lessThan = function(other) { - return this.compare(other) < 0; -}; - - -/** - * @param {goog.math.Long} other Long to compare against. - * @return {boolean} Whether this Long is less than or equal to the other. - */ -goog.math.Long.prototype.lessThanOrEqual = function(other) { - return this.compare(other) <= 0; -}; - - -/** - * @param {goog.math.Long} other Long to compare against. - * @return {boolean} Whether this Long is greater than the other. - */ -goog.math.Long.prototype.greaterThan = function(other) { - return this.compare(other) > 0; -}; - - -/** - * @param {goog.math.Long} other Long to compare against. - * @return {boolean} Whether this Long is greater than or equal to the other. - */ -goog.math.Long.prototype.greaterThanOrEqual = function(other) { - return this.compare(other) >= 0; -}; - - -/** - * Compares this Long with the given one. - * @param {goog.math.Long} other Long to compare against. - * @return {number} 0 if they are the same, 1 if the this is greater, and -1 - * if the given one is greater. - */ -goog.math.Long.prototype.compare = function(other) { - if (this.equals(other)) { - return 0; - } - - var thisNeg = this.isNegative(); - var otherNeg = other.isNegative(); - if (thisNeg && !otherNeg) { - return -1; - } - if (!thisNeg && otherNeg) { - return 1; - } - - // at this point, the signs are the same, so subtraction will not overflow - if (this.subtract(other).isNegative()) { - return -1; - } else { - return 1; - } -}; - - -/** @return {!goog.math.Long} The negation of this value. */ -goog.math.Long.prototype.negate = function() { - if (this.equals(goog.math.Long.getMinValue())) { - return goog.math.Long.getMinValue(); - } else { - return this.not().add(goog.math.Long.getOne()); - } -}; - - -/** - * Returns the sum of this and the given Long. - * @param {goog.math.Long} other Long to add to this one. - * @return {!goog.math.Long} The sum of this and the given Long. - */ -goog.math.Long.prototype.add = function(other) { - // Divide each number into 4 chunks of 16 bits, and then sum the chunks. - - var a48 = this.high_ >>> 16; - var a32 = this.high_ & 0xFFFF; - var a16 = this.low_ >>> 16; - var a00 = this.low_ & 0xFFFF; - - var b48 = other.high_ >>> 16; - var b32 = other.high_ & 0xFFFF; - var b16 = other.low_ >>> 16; - var b00 = other.low_ & 0xFFFF; - - var c48 = 0, c32 = 0, c16 = 0, c00 = 0; - c00 += a00 + b00; - c16 += c00 >>> 16; - c00 &= 0xFFFF; - c16 += a16 + b16; - c32 += c16 >>> 16; - c16 &= 0xFFFF; - c32 += a32 + b32; - c48 += c32 >>> 16; - c32 &= 0xFFFF; - c48 += a48 + b48; - c48 &= 0xFFFF; - return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); -}; - - -/** - * Returns the difference of this and the given Long. - * @param {goog.math.Long} other Long to subtract from this. - * @return {!goog.math.Long} The difference of this and the given Long. - */ -goog.math.Long.prototype.subtract = function(other) { - return this.add(other.negate()); -}; - - -/** - * Returns the product of this and the given long. - * @param {goog.math.Long} other Long to multiply with this. - * @return {!goog.math.Long} The product of this and the other. - */ -goog.math.Long.prototype.multiply = function(other) { - if (this.isZero()) { - return goog.math.Long.getZero(); - } else if (other.isZero()) { - return goog.math.Long.getZero(); - } - - if (this.equals(goog.math.Long.getMinValue())) { - return other.isOdd() ? goog.math.Long.getMinValue() : - goog.math.Long.getZero(); - } else if (other.equals(goog.math.Long.getMinValue())) { - return this.isOdd() ? goog.math.Long.getMinValue() : - goog.math.Long.getZero(); - } - - if (this.isNegative()) { - if (other.isNegative()) { - return this.negate().multiply(other.negate()); - } else { - return this.negate().multiply(other).negate(); - } - } else if (other.isNegative()) { - return this.multiply(other.negate()).negate(); - } - - // If both longs are small, use float multiplication - if (this.lessThan(goog.math.Long.getTwoPwr24()) && - other.lessThan(goog.math.Long.getTwoPwr24())) { - return goog.math.Long.fromNumber(this.toNumber() * other.toNumber()); - } - - // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products. - // We can skip products that would overflow. - - var a48 = this.high_ >>> 16; - var a32 = this.high_ & 0xFFFF; - var a16 = this.low_ >>> 16; - var a00 = this.low_ & 0xFFFF; - - var b48 = other.high_ >>> 16; - var b32 = other.high_ & 0xFFFF; - var b16 = other.low_ >>> 16; - var b00 = other.low_ & 0xFFFF; - - var c48 = 0, c32 = 0, c16 = 0, c00 = 0; - c00 += a00 * b00; - c16 += c00 >>> 16; - c00 &= 0xFFFF; - c16 += a16 * b00; - c32 += c16 >>> 16; - c16 &= 0xFFFF; - c16 += a00 * b16; - c32 += c16 >>> 16; - c16 &= 0xFFFF; - c32 += a32 * b00; - c48 += c32 >>> 16; - c32 &= 0xFFFF; - c32 += a16 * b16; - c48 += c32 >>> 16; - c32 &= 0xFFFF; - c32 += a00 * b32; - c48 += c32 >>> 16; - c32 &= 0xFFFF; - c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48; - c48 &= 0xFFFF; - return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); -}; - - -/** - * Returns this Long divided by the given one. - * @param {goog.math.Long} other Long by which to divide. - * @return {!goog.math.Long} This Long divided by the given one. - */ -goog.math.Long.prototype.div = function(other) { - if (other.isZero()) { - throw Error('division by zero'); - } else if (this.isZero()) { - return goog.math.Long.getZero(); - } - - if (this.equals(goog.math.Long.getMinValue())) { - if (other.equals(goog.math.Long.getOne()) || - other.equals(goog.math.Long.getNegOne())) { - return goog.math.Long.getMinValue(); // recall -MIN_VALUE == MIN_VALUE - } else if (other.equals(goog.math.Long.getMinValue())) { - return goog.math.Long.getOne(); - } else { - // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|. - var halfThis = this.shiftRight(1); - var approx = halfThis.div(other).shiftLeft(1); - if (approx.equals(goog.math.Long.getZero())) { - return other.isNegative() ? goog.math.Long.getOne() : - goog.math.Long.getNegOne(); - } else { - var rem = this.subtract(other.multiply(approx)); - var result = approx.add(rem.div(other)); - return result; - } - } - } else if (other.equals(goog.math.Long.getMinValue())) { - return goog.math.Long.getZero(); - } - - if (this.isNegative()) { - if (other.isNegative()) { - return this.negate().div(other.negate()); - } else { - return this.negate().div(other).negate(); - } - } else if (other.isNegative()) { - return this.div(other.negate()).negate(); - } - - // Repeat the following until the remainder is less than other: find a - // floating-point that approximates remainder / other *from below*, add this - // into the result, and subtract it from the remainder. It is critical that - // the approximate value is less than or equal to the real value so that the - // remainder never becomes negative. - var res = goog.math.Long.getZero(); - var rem = this; - while (rem.greaterThanOrEqual(other)) { - // Approximate the result of division. This may be a little greater or - // smaller than the actual value. - var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber())); - - // We will tweak the approximate result by changing it in the 48-th digit or - // the smallest non-fractional digit, whichever is larger. - var log2 = Math.ceil(Math.log(approx) / Math.LN2); - var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48); - - // Decrease the approximation until it is smaller than the remainder. Note - // that if it is too large, the product overflows and is negative. - var approxRes = goog.math.Long.fromNumber(approx); - var approxRem = approxRes.multiply(other); - while (approxRem.isNegative() || approxRem.greaterThan(rem)) { - approx -= delta; - approxRes = goog.math.Long.fromNumber(approx); - approxRem = approxRes.multiply(other); - } - - // We know the answer can't be zero... and actually, zero would cause - // infinite recursion since we would make no progress. - if (approxRes.isZero()) { - approxRes = goog.math.Long.getOne(); - } - - res = res.add(approxRes); - rem = rem.subtract(approxRem); - } - return res; -}; - - -/** - * Returns this Long modulo the given one. - * @param {goog.math.Long} other Long by which to mod. - * @return {!goog.math.Long} This Long modulo the given one. - */ -goog.math.Long.prototype.modulo = function(other) { - return this.subtract(this.div(other).multiply(other)); -}; - - -/** @return {!goog.math.Long} The bitwise-NOT of this value. */ -goog.math.Long.prototype.not = function() { - return goog.math.Long.fromBits(~this.low_, ~this.high_); -}; - - -/** - * Returns the bitwise-AND of this Long and the given one. - * @param {goog.math.Long} other The Long with which to AND. - * @return {!goog.math.Long} The bitwise-AND of this and the other. - */ -goog.math.Long.prototype.and = function(other) { - return goog.math.Long.fromBits( - this.low_ & other.low_, this.high_ & other.high_); -}; - - -/** - * Returns the bitwise-OR of this Long and the given one. - * @param {goog.math.Long} other The Long with which to OR. - * @return {!goog.math.Long} The bitwise-OR of this and the other. - */ -goog.math.Long.prototype.or = function(other) { - return goog.math.Long.fromBits( - this.low_ | other.low_, this.high_ | other.high_); -}; - - -/** - * Returns the bitwise-XOR of this Long and the given one. - * @param {goog.math.Long} other The Long with which to XOR. - * @return {!goog.math.Long} The bitwise-XOR of this and the other. - */ -goog.math.Long.prototype.xor = function(other) { - return goog.math.Long.fromBits( - this.low_ ^ other.low_, this.high_ ^ other.high_); -}; - - -/** - * Returns this Long with bits shifted to the left by the given amount. - * @param {number} numBits The number of bits by which to shift. - * @return {!goog.math.Long} This shifted to the left by the given amount. - */ -goog.math.Long.prototype.shiftLeft = function(numBits) { - numBits &= 63; - if (numBits == 0) { - return this; - } else { - var low = this.low_; - if (numBits < 32) { - var high = this.high_; - return goog.math.Long.fromBits( - low << numBits, (high << numBits) | (low >>> (32 - numBits))); - } else { - return goog.math.Long.fromBits(0, low << (numBits - 32)); - } - } -}; - - -/** - * Returns this Long with bits shifted to the right by the given amount. - * The new leading bits match the current sign bit. - * @param {number} numBits The number of bits by which to shift. - * @return {!goog.math.Long} This shifted to the right by the given amount. - */ -goog.math.Long.prototype.shiftRight = function(numBits) { - numBits &= 63; - if (numBits == 0) { - return this; - } else { - var high = this.high_; - if (numBits < 32) { - var low = this.low_; - return goog.math.Long.fromBits( - (low >>> numBits) | (high << (32 - numBits)), high >> numBits); - } else { - return goog.math.Long.fromBits( - high >> (numBits - 32), high >= 0 ? 0 : -1); - } - } -}; - - -/** - * Returns this Long with bits shifted to the right by the given amount, with - * zeros placed into the new leading bits. - * @param {number} numBits The number of bits by which to shift. - * @return {!goog.math.Long} This shifted to the right by the given amount, with - * zeros placed into the new leading bits. - */ -goog.math.Long.prototype.shiftRightUnsigned = function(numBits) { - numBits &= 63; - if (numBits == 0) { - return this; - } else { - var high = this.high_; - if (numBits < 32) { - var low = this.low_; - return goog.math.Long.fromBits( - (low >>> numBits) | (high << (32 - numBits)), high >>> numBits); - } else if (numBits == 32) { - return goog.math.Long.fromBits(high, 0); - } else { - return goog.math.Long.fromBits(high >>> (numBits - 32), 0); - } - } -}; - - -/** - * @enum {number} Ids of commonly requested Long instances. - * @private - */ -goog.math.Long.ValueCacheId_ = { - MAX_VALUE: 1, - MIN_VALUE: 2, - ZERO: 3, - ONE: 4, - NEG_ONE: 5, - TWO_PWR_24: 6 -}; |