diff options
Diffstat (limited to 'static/src/assets/viz/1/goog/math')
-rw-r--r-- | static/src/assets/viz/1/goog/math/coordinate.js | 268 | ||||
-rw-r--r-- | static/src/assets/viz/1/goog/math/integer.js | 807 | ||||
-rw-r--r-- | static/src/assets/viz/1/goog/math/long.js | 843 | ||||
-rw-r--r-- | static/src/assets/viz/1/goog/math/math.js | 447 | ||||
-rw-r--r-- | static/src/assets/viz/1/goog/math/size.js | 227 |
5 files changed, 0 insertions, 2592 deletions
diff --git a/static/src/assets/viz/1/goog/math/coordinate.js b/static/src/assets/viz/1/goog/math/coordinate.js deleted file mode 100644 index a08b9cb..0000000 --- a/static/src/assets/viz/1/goog/math/coordinate.js +++ /dev/null @@ -1,268 +0,0 @@ -// Copyright 2006 The Closure Library Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS-IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/** - * @fileoverview A utility class for representing two-dimensional positions. - */ - - -goog.provide('goog.math.Coordinate'); - -goog.require('goog.math'); - - - -/** - * Class for representing coordinates and positions. - * @param {number=} opt_x Left, defaults to 0. - * @param {number=} opt_y Top, defaults to 0. - * @struct - * @constructor - */ -goog.math.Coordinate = function(opt_x, opt_y) { - /** - * X-value - * @type {number} - */ - this.x = goog.isDef(opt_x) ? opt_x : 0; - - /** - * Y-value - * @type {number} - */ - this.y = goog.isDef(opt_y) ? opt_y : 0; -}; - - -/** - * Returns a new copy of the coordinate. - * @return {!goog.math.Coordinate} A clone of this coordinate. - */ -goog.math.Coordinate.prototype.clone = function() { - return new goog.math.Coordinate(this.x, this.y); -}; - - -if (goog.DEBUG) { - /** - * Returns a nice string representing the coordinate. - * @return {string} In the form (50, 73). - * @override - */ - goog.math.Coordinate.prototype.toString = function() { - return '(' + this.x + ', ' + this.y + ')'; - }; -} - - -/** - * Compares coordinates for equality. - * @param {goog.math.Coordinate} a A Coordinate. - * @param {goog.math.Coordinate} b A Coordinate. - * @return {boolean} True iff the coordinates are equal, or if both are null. - */ -goog.math.Coordinate.equals = function(a, b) { - if (a == b) { - return true; - } - if (!a || !b) { - return false; - } - return a.x == b.x && a.y == b.y; -}; - - -/** - * Returns the distance between two coordinates. - * @param {!goog.math.Coordinate} a A Coordinate. - * @param {!goog.math.Coordinate} b A Coordinate. - * @return {number} The distance between {@code a} and {@code b}. - */ -goog.math.Coordinate.distance = function(a, b) { - var dx = a.x - b.x; - var dy = a.y - b.y; - return Math.sqrt(dx * dx + dy * dy); -}; - - -/** - * Returns the magnitude of a coordinate. - * @param {!goog.math.Coordinate} a A Coordinate. - * @return {number} The distance between the origin and {@code a}. - */ -goog.math.Coordinate.magnitude = function(a) { - return Math.sqrt(a.x * a.x + a.y * a.y); -}; - - -/** - * Returns the angle from the origin to a coordinate. - * @param {!goog.math.Coordinate} a A Coordinate. - * @return {number} The angle, in degrees, clockwise from the positive X - * axis to {@code a}. - */ -goog.math.Coordinate.azimuth = function(a) { - return goog.math.angle(0, 0, a.x, a.y); -}; - - -/** - * Returns the squared distance between two coordinates. Squared distances can - * be used for comparisons when the actual value is not required. - * - * Performance note: eliminating the square root is an optimization often used - * in lower-level languages, but the speed difference is not nearly as - * pronounced in JavaScript (only a few percent.) - * - * @param {!goog.math.Coordinate} a A Coordinate. - * @param {!goog.math.Coordinate} b A Coordinate. - * @return {number} The squared distance between {@code a} and {@code b}. - */ -goog.math.Coordinate.squaredDistance = function(a, b) { - var dx = a.x - b.x; - var dy = a.y - b.y; - return dx * dx + dy * dy; -}; - - -/** - * Returns the difference between two coordinates as a new - * goog.math.Coordinate. - * @param {!goog.math.Coordinate} a A Coordinate. - * @param {!goog.math.Coordinate} b A Coordinate. - * @return {!goog.math.Coordinate} A Coordinate representing the difference - * between {@code a} and {@code b}. - */ -goog.math.Coordinate.difference = function(a, b) { - return new goog.math.Coordinate(a.x - b.x, a.y - b.y); -}; - - -/** - * Returns the sum of two coordinates as a new goog.math.Coordinate. - * @param {!goog.math.Coordinate} a A Coordinate. - * @param {!goog.math.Coordinate} b A Coordinate. - * @return {!goog.math.Coordinate} A Coordinate representing the sum of the two - * coordinates. - */ -goog.math.Coordinate.sum = function(a, b) { - return new goog.math.Coordinate(a.x + b.x, a.y + b.y); -}; - - -/** - * Rounds the x and y fields to the next larger integer values. - * @return {!goog.math.Coordinate} This coordinate with ceil'd fields. - */ -goog.math.Coordinate.prototype.ceil = function() { - this.x = Math.ceil(this.x); - this.y = Math.ceil(this.y); - return this; -}; - - -/** - * Rounds the x and y fields to the next smaller integer values. - * @return {!goog.math.Coordinate} This coordinate with floored fields. - */ -goog.math.Coordinate.prototype.floor = function() { - this.x = Math.floor(this.x); - this.y = Math.floor(this.y); - return this; -}; - - -/** - * Rounds the x and y fields to the nearest integer values. - * @return {!goog.math.Coordinate} This coordinate with rounded fields. - */ -goog.math.Coordinate.prototype.round = function() { - this.x = Math.round(this.x); - this.y = Math.round(this.y); - return this; -}; - - -/** - * Translates this box by the given offsets. If a {@code goog.math.Coordinate} - * is given, then the x and y values are translated by the coordinate's x and y. - * Otherwise, x and y are translated by {@code tx} and {@code opt_ty} - * respectively. - * @param {number|goog.math.Coordinate} tx The value to translate x by or the - * the coordinate to translate this coordinate by. - * @param {number=} opt_ty The value to translate y by. - * @return {!goog.math.Coordinate} This coordinate after translating. - */ -goog.math.Coordinate.prototype.translate = function(tx, opt_ty) { - if (tx instanceof goog.math.Coordinate) { - this.x += tx.x; - this.y += tx.y; - } else { - this.x += Number(tx); - if (goog.isNumber(opt_ty)) { - this.y += opt_ty; - } - } - return this; -}; - - -/** - * Scales this coordinate by the given scale factors. The x and y values are - * scaled by {@code sx} and {@code opt_sy} respectively. If {@code opt_sy} - * is not given, then {@code sx} is used for both x and y. - * @param {number} sx The scale factor to use for the x dimension. - * @param {number=} opt_sy The scale factor to use for the y dimension. - * @return {!goog.math.Coordinate} This coordinate after scaling. - */ -goog.math.Coordinate.prototype.scale = function(sx, opt_sy) { - var sy = goog.isNumber(opt_sy) ? opt_sy : sx; - this.x *= sx; - this.y *= sy; - return this; -}; - - -/** - * Rotates this coordinate clockwise about the origin (or, optionally, the given - * center) by the given angle, in radians. - * @param {number} radians The angle by which to rotate this coordinate - * clockwise about the given center, in radians. - * @param {!goog.math.Coordinate=} opt_center The center of rotation. Defaults - * to (0, 0) if not given. - */ -goog.math.Coordinate.prototype.rotateRadians = function(radians, opt_center) { - var center = opt_center || new goog.math.Coordinate(0, 0); - - var x = this.x; - var y = this.y; - var cos = Math.cos(radians); - var sin = Math.sin(radians); - - this.x = (x - center.x) * cos - (y - center.y) * sin + center.x; - this.y = (x - center.x) * sin + (y - center.y) * cos + center.y; -}; - - -/** - * Rotates this coordinate clockwise about the origin (or, optionally, the given - * center) by the given angle, in degrees. - * @param {number} degrees The angle by which to rotate this coordinate - * clockwise about the given center, in degrees. - * @param {!goog.math.Coordinate=} opt_center The center of rotation. Defaults - * to (0, 0) if not given. - */ -goog.math.Coordinate.prototype.rotateDegrees = function(degrees, opt_center) { - this.rotateRadians(goog.math.toRadians(degrees), opt_center); -}; diff --git a/static/src/assets/viz/1/goog/math/integer.js b/static/src/assets/viz/1/goog/math/integer.js deleted file mode 100644 index 11b6a95..0000000 --- a/static/src/assets/viz/1/goog/math/integer.js +++ /dev/null @@ -1,807 +0,0 @@ -// Copyright 2009 The Closure Library Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS-IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/** - * @fileoverview Defines an Integer class for representing (potentially) - * infinite length two's-complement integer values. - * - * For the specific case of 64-bit integers, use goog.math.Long, which is more - * efficient. - * - */ - -goog.provide('goog.math.Integer'); - - - -/** - * Constructs a two's-complement integer an array containing bits of the - * integer in 32-bit (signed) pieces, given in little-endian order (i.e., - * lowest-order bits in the first piece), and the sign of -1 or 0. - * - * See the from* functions below for other convenient ways of constructing - * Integers. - * - * The internal representation of an integer is an array of 32-bit signed - * pieces, along with a sign (0 or -1) that indicates the contents of all the - * other 32-bit pieces out to infinity. We use 32-bit pieces because these are - * the size of integers on which Javascript performs bit-operations. For - * operations like addition and multiplication, we split each number into 16-bit - * pieces, which can easily be multiplied within Javascript's floating-point - * representation without overflow or change in sign. - * - * @struct - * @constructor - * @param {Array<number>} bits Array containing the bits of the number. - * @param {number} sign The sign of the number: -1 for negative and 0 positive. - * @final - */ -goog.math.Integer = function(bits, sign) { - /** - * @type {!Array<number>} - * @private - */ - this.bits_ = []; - - /** - * @type {number} - * @private - */ - this.sign_ = sign; - - // Copy the 32-bit signed integer values passed in. We prune out those at the - // top that equal the sign since they are redundant. - var top = true; - for (var i = bits.length - 1; i >= 0; i--) { - var val = bits[i] | 0; - if (!top || val != sign) { - this.bits_[i] = val; - top = false; - } - } -}; - - -// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the -// from* methods on which they depend. - - -/** - * A cache of the Integer representations of small integer values. - * @type {!Object} - * @private - */ -goog.math.Integer.IntCache_ = {}; - - -/** - * Returns an Integer representing the given (32-bit) integer value. - * @param {number} value A 32-bit integer value. - * @return {!goog.math.Integer} The corresponding Integer value. - */ -goog.math.Integer.fromInt = function(value) { - if (-128 <= value && value < 128) { - var cachedObj = goog.math.Integer.IntCache_[value]; - if (cachedObj) { - return cachedObj; - } - } - - var obj = new goog.math.Integer([value | 0], value < 0 ? -1 : 0); - if (-128 <= value && value < 128) { - goog.math.Integer.IntCache_[value] = obj; - } - return obj; -}; - - -/** - * Returns an Integer representing the given value, provided that it is a finite - * number. Otherwise, zero is returned. - * @param {number} value The value in question. - * @return {!goog.math.Integer} The corresponding Integer value. - */ -goog.math.Integer.fromNumber = function(value) { - if (isNaN(value) || !isFinite(value)) { - return goog.math.Integer.ZERO; - } else if (value < 0) { - return goog.math.Integer.fromNumber(-value).negate(); - } else { - var bits = []; - var pow = 1; - for (var i = 0; value >= pow; i++) { - bits[i] = (value / pow) | 0; - pow *= goog.math.Integer.TWO_PWR_32_DBL_; - } - return new goog.math.Integer(bits, 0); - } -}; - - -/** - * Returns a Integer representing the value that comes by concatenating the - * given entries, each is assumed to be 32 signed bits, given in little-endian - * order (lowest order bits in the lowest index), and sign-extending the highest - * order 32-bit value. - * @param {Array<number>} bits The bits of the number, in 32-bit signed pieces, - * in little-endian order. - * @return {!goog.math.Integer} The corresponding Integer value. - */ -goog.math.Integer.fromBits = function(bits) { - var high = bits[bits.length - 1]; - return new goog.math.Integer(bits, high & (1 << 31) ? -1 : 0); -}; - - -/** - * Returns an Integer representation of the given string, written using the - * given radix. - * @param {string} str The textual representation of the Integer. - * @param {number=} opt_radix The radix in which the text is written. - * @return {!goog.math.Integer} The corresponding Integer value. - */ -goog.math.Integer.fromString = function(str, opt_radix) { - if (str.length == 0) { - throw Error('number format error: empty string'); - } - - var radix = opt_radix || 10; - if (radix < 2 || 36 < radix) { - throw Error('radix out of range: ' + radix); - } - - if (str.charAt(0) == '-') { - return goog.math.Integer.fromString(str.substring(1), radix).negate(); - } else if (str.indexOf('-') >= 0) { - throw Error('number format error: interior "-" character'); - } - - // Do several (8) digits each time through the loop, so as to - // minimize the calls to the very expensive emulated div. - var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 8)); - - var result = goog.math.Integer.ZERO; - for (var i = 0; i < str.length; i += 8) { - var size = Math.min(8, str.length - i); - var value = parseInt(str.substring(i, i + size), radix); - if (size < 8) { - var power = goog.math.Integer.fromNumber(Math.pow(radix, size)); - result = result.multiply(power).add(goog.math.Integer.fromNumber(value)); - } else { - result = result.multiply(radixToPower); - result = result.add(goog.math.Integer.fromNumber(value)); - } - } - return result; -}; - - -/** - * A number used repeatedly in calculations. This must appear before the first - * call to the from* functions below. - * @type {number} - * @private - */ -goog.math.Integer.TWO_PWR_32_DBL_ = (1 << 16) * (1 << 16); - - -/** @type {!goog.math.Integer} */ -goog.math.Integer.ZERO = goog.math.Integer.fromInt(0); - - -/** @type {!goog.math.Integer} */ -goog.math.Integer.ONE = goog.math.Integer.fromInt(1); - - -/** - * @type {!goog.math.Integer} - * @private - */ -goog.math.Integer.TWO_PWR_24_ = goog.math.Integer.fromInt(1 << 24); - - -/** - * Returns the value, assuming it is a 32-bit integer. - * @return {number} The corresponding int value. - */ -goog.math.Integer.prototype.toInt = function() { - return this.bits_.length > 0 ? this.bits_[0] : this.sign_; -}; - - -/** @return {number} The closest floating-point representation to this value. */ -goog.math.Integer.prototype.toNumber = function() { - if (this.isNegative()) { - return -this.negate().toNumber(); - } else { - var val = 0; - var pow = 1; - for (var i = 0; i < this.bits_.length; i++) { - val += this.getBitsUnsigned(i) * pow; - pow *= goog.math.Integer.TWO_PWR_32_DBL_; - } - return val; - } -}; - - -/** - * @param {number=} opt_radix The radix in which the text should be written. - * @return {string} The textual representation of this value. - * @override - */ -goog.math.Integer.prototype.toString = function(opt_radix) { - var radix = opt_radix || 10; - if (radix < 2 || 36 < radix) { - throw Error('radix out of range: ' + radix); - } - - if (this.isZero()) { - return '0'; - } else if (this.isNegative()) { - return '-' + this.negate().toString(radix); - } - - // Do several (6) digits each time through the loop, so as to - // minimize the calls to the very expensive emulated div. - var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 6)); - - var rem = this; - var result = ''; - while (true) { - var remDiv = rem.divide(radixToPower); - // The right shifting fixes negative values in the case when - // intval >= 2^31; for more details see - // https://github.com/google/closure-library/pull/498 - var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0; - var digits = intval.toString(radix); - - rem = remDiv; - if (rem.isZero()) { - return digits + result; - } else { - while (digits.length < 6) { - digits = '0' + digits; - } - result = '' + digits + result; - } - } -}; - - -/** - * Returns the index-th 32-bit (signed) piece of the Integer according to - * little-endian order (i.e., index 0 contains the smallest bits). - * @param {number} index The index in question. - * @return {number} The requested 32-bits as a signed number. - */ -goog.math.Integer.prototype.getBits = function(index) { - if (index < 0) { - return 0; // Allowing this simplifies bit shifting operations below... - } else if (index < this.bits_.length) { - return this.bits_[index]; - } else { - return this.sign_; - } -}; - - -/** - * Returns the index-th 32-bit piece as an unsigned number. - * @param {number} index The index in question. - * @return {number} The requested 32-bits as an unsigned number. - */ -goog.math.Integer.prototype.getBitsUnsigned = function(index) { - var val = this.getBits(index); - return val >= 0 ? val : goog.math.Integer.TWO_PWR_32_DBL_ + val; -}; - - -/** @return {number} The sign bit of this number, -1 or 0. */ -goog.math.Integer.prototype.getSign = function() { - return this.sign_; -}; - - -/** @return {boolean} Whether this value is zero. */ -goog.math.Integer.prototype.isZero = function() { - if (this.sign_ != 0) { - return false; - } - for (var i = 0; i < this.bits_.length; i++) { - if (this.bits_[i] != 0) { - return false; - } - } - return true; -}; - - -/** @return {boolean} Whether this value is negative. */ -goog.math.Integer.prototype.isNegative = function() { - return this.sign_ == -1; -}; - - -/** @return {boolean} Whether this value is odd. */ -goog.math.Integer.prototype.isOdd = function() { - return (this.bits_.length == 0) && (this.sign_ == -1) || - (this.bits_.length > 0) && ((this.bits_[0] & 1) != 0); -}; - - -/** - * @param {goog.math.Integer} other Integer to compare against. - * @return {boolean} Whether this Integer equals the other. - */ -goog.math.Integer.prototype.equals = function(other) { - if (this.sign_ != other.sign_) { - return false; - } - var len = Math.max(this.bits_.length, other.bits_.length); - for (var i = 0; i < len; i++) { - if (this.getBits(i) != other.getBits(i)) { - return false; - } - } - return true; -}; - - -/** - * @param {goog.math.Integer} other Integer to compare against. - * @return {boolean} Whether this Integer does not equal the other. - */ -goog.math.Integer.prototype.notEquals = function(other) { - return !this.equals(other); -}; - - -/** - * @param {goog.math.Integer} other Integer to compare against. - * @return {boolean} Whether this Integer is greater than the other. - */ -goog.math.Integer.prototype.greaterThan = function(other) { - return this.compare(other) > 0; -}; - - -/** - * @param {goog.math.Integer} other Integer to compare against. - * @return {boolean} Whether this Integer is greater than or equal to the other. - */ -goog.math.Integer.prototype.greaterThanOrEqual = function(other) { - return this.compare(other) >= 0; -}; - - -/** - * @param {goog.math.Integer} other Integer to compare against. - * @return {boolean} Whether this Integer is less than the other. - */ -goog.math.Integer.prototype.lessThan = function(other) { - return this.compare(other) < 0; -}; - - -/** - * @param {goog.math.Integer} other Integer to compare against. - * @return {boolean} Whether this Integer is less than or equal to the other. - */ -goog.math.Integer.prototype.lessThanOrEqual = function(other) { - return this.compare(other) <= 0; -}; - - -/** - * Compares this Integer with the given one. - * @param {goog.math.Integer} other Integer to compare against. - * @return {number} 0 if they are the same, 1 if the this is greater, and -1 - * if the given one is greater. - */ -goog.math.Integer.prototype.compare = function(other) { - var diff = this.subtract(other); - if (diff.isNegative()) { - return -1; - } else if (diff.isZero()) { - return 0; - } else { - return +1; - } -}; - - -/** - * Returns an integer with only the first numBits bits of this value, sign - * extended from the final bit. - * @param {number} numBits The number of bits by which to shift. - * @return {!goog.math.Integer} The shorted integer value. - */ -goog.math.Integer.prototype.shorten = function(numBits) { - var arr_index = (numBits - 1) >> 5; - var bit_index = (numBits - 1) % 32; - var bits = []; - for (var i = 0; i < arr_index; i++) { - bits[i] = this.getBits(i); - } - var sigBits = bit_index == 31 ? 0xFFFFFFFF : (1 << (bit_index + 1)) - 1; - var val = this.getBits(arr_index) & sigBits; - if (val & (1 << bit_index)) { - val |= 0xFFFFFFFF - sigBits; - bits[arr_index] = val; - return new goog.math.Integer(bits, -1); - } else { - bits[arr_index] = val; - return new goog.math.Integer(bits, 0); - } -}; - - -/** @return {!goog.math.Integer} The negation of this value. */ -goog.math.Integer.prototype.negate = function() { - return this.not().add(goog.math.Integer.ONE); -}; - - -/** - * Returns the sum of this and the given Integer. - * @param {goog.math.Integer} other The Integer to add to this. - * @return {!goog.math.Integer} The Integer result. - */ -goog.math.Integer.prototype.add = function(other) { - var len = Math.max(this.bits_.length, other.bits_.length); - var arr = []; - var carry = 0; - - for (var i = 0; i <= len; i++) { - var a1 = this.getBits(i) >>> 16; - var a0 = this.getBits(i) & 0xFFFF; - - var b1 = other.getBits(i) >>> 16; - var b0 = other.getBits(i) & 0xFFFF; - - var c0 = carry + a0 + b0; - var c1 = (c0 >>> 16) + a1 + b1; - carry = c1 >>> 16; - c0 &= 0xFFFF; - c1 &= 0xFFFF; - arr[i] = (c1 << 16) | c0; - } - return goog.math.Integer.fromBits(arr); -}; - - -/** - * Returns the difference of this and the given Integer. - * @param {goog.math.Integer} other The Integer to subtract from this. - * @return {!goog.math.Integer} The Integer result. - */ -goog.math.Integer.prototype.subtract = function(other) { - return this.add(other.negate()); -}; - - -/** - * Returns the product of this and the given Integer. - * @param {goog.math.Integer} other The Integer to multiply against this. - * @return {!goog.math.Integer} The product of this and the other. - */ -goog.math.Integer.prototype.multiply = function(other) { - if (this.isZero()) { - return goog.math.Integer.ZERO; - } else if (other.isZero()) { - return goog.math.Integer.ZERO; - } - - if (this.isNegative()) { - if (other.isNegative()) { - return this.negate().multiply(other.negate()); - } else { - return this.negate().multiply(other).negate(); - } - } else if (other.isNegative()) { - return this.multiply(other.negate()).negate(); - } - - // If both numbers are small, use float multiplication - if (this.lessThan(goog.math.Integer.TWO_PWR_24_) && - other.lessThan(goog.math.Integer.TWO_PWR_24_)) { - return goog.math.Integer.fromNumber(this.toNumber() * other.toNumber()); - } - - // Fill in an array of 16-bit products. - var len = this.bits_.length + other.bits_.length; - var arr = []; - for (var i = 0; i < 2 * len; i++) { - arr[i] = 0; - } - for (var i = 0; i < this.bits_.length; i++) { - for (var j = 0; j < other.bits_.length; j++) { - var a1 = this.getBits(i) >>> 16; - var a0 = this.getBits(i) & 0xFFFF; - - var b1 = other.getBits(j) >>> 16; - var b0 = other.getBits(j) & 0xFFFF; - - arr[2 * i + 2 * j] += a0 * b0; - goog.math.Integer.carry16_(arr, 2 * i + 2 * j); - arr[2 * i + 2 * j + 1] += a1 * b0; - goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1); - arr[2 * i + 2 * j + 1] += a0 * b1; - goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1); - arr[2 * i + 2 * j + 2] += a1 * b1; - goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 2); - } - } - - // Combine the 16-bit values into 32-bit values. - for (var i = 0; i < len; i++) { - arr[i] = (arr[2 * i + 1] << 16) | arr[2 * i]; - } - for (var i = len; i < 2 * len; i++) { - arr[i] = 0; - } - return new goog.math.Integer(arr, 0); -}; - - -/** - * Carries any overflow from the given index into later entries. - * @param {Array<number>} bits Array of 16-bit values in little-endian order. - * @param {number} index The index in question. - * @private - */ -goog.math.Integer.carry16_ = function(bits, index) { - while ((bits[index] & 0xFFFF) != bits[index]) { - bits[index + 1] += bits[index] >>> 16; - bits[index] &= 0xFFFF; - } -}; - - -/** - * Returns "this" Integer divided by the given one. Both "this" and the given - * Integer MUST be positive. - * - * This method is only needed for very large numbers (>10^308), - * for which the original division algorithm gets into an infinite - * loop (see https://github.com/google/closure-library/issues/500). - * - * The algorithm has some possible performance enhancements (or - * could be rewritten entirely), it's just an initial solution for - * the issue linked above. - * - * @param {!goog.math.Integer} other The Integer to divide "this" by. - * @return {!goog.math.Integer} "this" value divided by the given one. - * @private - */ -goog.math.Integer.prototype.slowDivide_ = function(other) { - if (this.isNegative() || other.isNegative()) { - throw Error('slowDivide_ only works with positive integers.'); - } - - var twoPower = goog.math.Integer.ONE; - var multiple = other; - - // First we have to figure out what the highest bit of the result - // is, so we increase "twoPower" and "multiple" until "multiple" - // exceeds "this". - while (multiple.lessThanOrEqual(this)) { - twoPower = twoPower.shiftLeft(1); - multiple = multiple.shiftLeft(1); - } - - // Rewind by one power of two, giving us the highest bit of the - // result. - var res = twoPower.shiftRight(1); - var total = multiple.shiftRight(1); - - // Now we starting decreasing "multiple" and "twoPower" to find the - // rest of the bits of the result. - var total2; - multiple = multiple.shiftRight(2); - twoPower = twoPower.shiftRight(2); - while (!multiple.isZero()) { - // whenever we can add "multiple" to the total and not exceed - // "this", that means we've found a 1 bit. Else we've found a 0 - // and don't need to add to the result. - total2 = total.add(multiple); - if (total2.lessThanOrEqual(this)) { - res = res.add(twoPower); - total = total2; - } - multiple = multiple.shiftRight(1); - twoPower = twoPower.shiftRight(1); - } - return res; -}; - - -/** - * Returns this Integer divided by the given one. - * @param {!goog.math.Integer} other The Integer to divide this by. - * @return {!goog.math.Integer} This value divided by the given one. - */ -goog.math.Integer.prototype.divide = function(other) { - if (other.isZero()) { - throw Error('division by zero'); - } else if (this.isZero()) { - return goog.math.Integer.ZERO; - } - - if (this.isNegative()) { - if (other.isNegative()) { - return this.negate().divide(other.negate()); - } else { - return this.negate().divide(other).negate(); - } - } else if (other.isNegative()) { - return this.divide(other.negate()).negate(); - } - - // Have to degrade to slowDivide for Very Large Numbers, because - // they're out of range for the floating-point approximation - // technique used below. - if (this.bits_.length > 30) { - return this.slowDivide_(other); - } - - // Repeat the following until the remainder is less than other: find a - // floating-point that approximates remainder / other *from below*, add this - // into the result, and subtract it from the remainder. It is critical that - // the approximate value is less than or equal to the real value so that the - // remainder never becomes negative. - var res = goog.math.Integer.ZERO; - var rem = this; - while (rem.greaterThanOrEqual(other)) { - // Approximate the result of division. This may be a little greater or - // smaller than the actual value. - var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber())); - - // We will tweak the approximate result by changing it in the 48-th digit or - // the smallest non-fractional digit, whichever is larger. - var log2 = Math.ceil(Math.log(approx) / Math.LN2); - var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48); - - // Decrease the approximation until it is smaller than the remainder. Note - // that if it is too large, the product overflows and is negative. - var approxRes = goog.math.Integer.fromNumber(approx); - var approxRem = approxRes.multiply(other); - while (approxRem.isNegative() || approxRem.greaterThan(rem)) { - approx -= delta; - approxRes = goog.math.Integer.fromNumber(approx); - approxRem = approxRes.multiply(other); - } - - // We know the answer can't be zero... and actually, zero would cause - // infinite recursion since we would make no progress. - if (approxRes.isZero()) { - approxRes = goog.math.Integer.ONE; - } - - res = res.add(approxRes); - rem = rem.subtract(approxRem); - } - return res; -}; - - -/** - * Returns this Integer modulo the given one. - * @param {!goog.math.Integer} other The Integer by which to mod. - * @return {!goog.math.Integer} This value modulo the given one. - */ -goog.math.Integer.prototype.modulo = function(other) { - return this.subtract(this.divide(other).multiply(other)); -}; - - -/** @return {!goog.math.Integer} The bitwise-NOT of this value. */ -goog.math.Integer.prototype.not = function() { - var len = this.bits_.length; - var arr = []; - for (var i = 0; i < len; i++) { - arr[i] = ~this.bits_[i]; - } - return new goog.math.Integer(arr, ~this.sign_); -}; - - -/** - * Returns the bitwise-AND of this Integer and the given one. - * @param {goog.math.Integer} other The Integer to AND with this. - * @return {!goog.math.Integer} The bitwise-AND of this and the other. - */ -goog.math.Integer.prototype.and = function(other) { - var len = Math.max(this.bits_.length, other.bits_.length); - var arr = []; - for (var i = 0; i < len; i++) { - arr[i] = this.getBits(i) & other.getBits(i); - } - return new goog.math.Integer(arr, this.sign_ & other.sign_); -}; - - -/** - * Returns the bitwise-OR of this Integer and the given one. - * @param {goog.math.Integer} other The Integer to OR with this. - * @return {!goog.math.Integer} The bitwise-OR of this and the other. - */ -goog.math.Integer.prototype.or = function(other) { - var len = Math.max(this.bits_.length, other.bits_.length); - var arr = []; - for (var i = 0; i < len; i++) { - arr[i] = this.getBits(i) | other.getBits(i); - } - return new goog.math.Integer(arr, this.sign_ | other.sign_); -}; - - -/** - * Returns the bitwise-XOR of this Integer and the given one. - * @param {goog.math.Integer} other The Integer to XOR with this. - * @return {!goog.math.Integer} The bitwise-XOR of this and the other. - */ -goog.math.Integer.prototype.xor = function(other) { - var len = Math.max(this.bits_.length, other.bits_.length); - var arr = []; - for (var i = 0; i < len; i++) { - arr[i] = this.getBits(i) ^ other.getBits(i); - } - return new goog.math.Integer(arr, this.sign_ ^ other.sign_); -}; - - -/** - * Returns this value with bits shifted to the left by the given amount. - * @param {number} numBits The number of bits by which to shift. - * @return {!goog.math.Integer} This shifted to the left by the given amount. - */ -goog.math.Integer.prototype.shiftLeft = function(numBits) { - var arr_delta = numBits >> 5; - var bit_delta = numBits % 32; - var len = this.bits_.length + arr_delta + (bit_delta > 0 ? 1 : 0); - var arr = []; - for (var i = 0; i < len; i++) { - if (bit_delta > 0) { - arr[i] = (this.getBits(i - arr_delta) << bit_delta) | - (this.getBits(i - arr_delta - 1) >>> (32 - bit_delta)); - } else { - arr[i] = this.getBits(i - arr_delta); - } - } - return new goog.math.Integer(arr, this.sign_); -}; - - -/** - * Returns this value with bits shifted to the right by the given amount. - * @param {number} numBits The number of bits by which to shift. - * @return {!goog.math.Integer} This shifted to the right by the given amount. - */ -goog.math.Integer.prototype.shiftRight = function(numBits) { - var arr_delta = numBits >> 5; - var bit_delta = numBits % 32; - var len = this.bits_.length - arr_delta; - var arr = []; - for (var i = 0; i < len; i++) { - if (bit_delta > 0) { - arr[i] = (this.getBits(i + arr_delta) >>> bit_delta) | - (this.getBits(i + arr_delta + 1) << (32 - bit_delta)); - } else { - arr[i] = this.getBits(i + arr_delta); - } - } - return new goog.math.Integer(arr, this.sign_); -}; diff --git a/static/src/assets/viz/1/goog/math/long.js b/static/src/assets/viz/1/goog/math/long.js deleted file mode 100644 index a43ea3f..0000000 --- a/static/src/assets/viz/1/goog/math/long.js +++ /dev/null @@ -1,843 +0,0 @@ -// Copyright 2009 The Closure Library Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS-IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/** - * @fileoverview Defines a Long class for representing a 64-bit two's-complement - * integer value, which faithfully simulates the behavior of a Java "long". This - * implementation is derived from LongLib in GWT. - * - */ - -goog.provide('goog.math.Long'); - -goog.require('goog.reflect'); - - - -/** - * Constructs a 64-bit two's-complement integer, given its low and high 32-bit - * values as *signed* integers. See the from* functions below for more - * convenient ways of constructing Longs. - * - * The internal representation of a long is the two given signed, 32-bit values. - * We use 32-bit pieces because these are the size of integers on which - * Javascript performs bit-operations. For operations like addition and - * multiplication, we split each number into 16-bit pieces, which can easily be - * multiplied within Javascript's floating-point representation without overflow - * or change in sign. - * - * In the algorithms below, we frequently reduce the negative case to the - * positive case by negating the input(s) and then post-processing the result. - * Note that we must ALWAYS check specially whether those values are MIN_VALUE - * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as - * a positive number, it overflows back into a negative). Not handling this - * case would often result in infinite recursion. - * - * @param {number} low The low (signed) 32 bits of the long. - * @param {number} high The high (signed) 32 bits of the long. - * @struct - * @constructor - * @final - */ -goog.math.Long = function(low, high) { - /** - * @type {number} - * @private - */ - this.low_ = low | 0; // force into 32 signed bits. - - /** - * @type {number} - * @private - */ - this.high_ = high | 0; // force into 32 signed bits. -}; - - -// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the -// from* methods on which they depend. - - -/** - * A cache of the Long representations of small integer values. - * @type {!Object<number, !goog.math.Long>} - * @private - */ -goog.math.Long.IntCache_ = {}; - - -/** - * A cache of the Long representations of common values. - * @type {!Object<goog.math.Long.ValueCacheId_, !goog.math.Long>} - * @private - */ -goog.math.Long.valueCache_ = {}; - - -/** - * Returns a Long representing the given (32-bit) integer value. - * @param {number} value The 32-bit integer in question. - * @return {!goog.math.Long} The corresponding Long value. - */ -goog.math.Long.fromInt = function(value) { - if (-128 <= value && value < 128) { - return goog.reflect.cache(goog.math.Long.IntCache_, value, function(val) { - return new goog.math.Long(val | 0, val < 0 ? -1 : 0); - }); - } else { - return new goog.math.Long(value | 0, value < 0 ? -1 : 0); - } -}; - - -/** - * Returns a Long representing the given value. - * NaN will be returned as zero. Infinity is converted to max value and - * -Infinity to min value. - * @param {number} value The number in question. - * @return {!goog.math.Long} The corresponding Long value. - */ -goog.math.Long.fromNumber = function(value) { - if (isNaN(value)) { - return goog.math.Long.getZero(); - } else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) { - return goog.math.Long.getMinValue(); - } else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) { - return goog.math.Long.getMaxValue(); - } else if (value < 0) { - return goog.math.Long.fromNumber(-value).negate(); - } else { - return new goog.math.Long( - (value % goog.math.Long.TWO_PWR_32_DBL_) | 0, - (value / goog.math.Long.TWO_PWR_32_DBL_) | 0); - } -}; - - -/** - * Returns a Long representing the 64-bit integer that comes by concatenating - * the given high and low bits. Each is assumed to use 32 bits. - * @param {number} lowBits The low 32-bits. - * @param {number} highBits The high 32-bits. - * @return {!goog.math.Long} The corresponding Long value. - */ -goog.math.Long.fromBits = function(lowBits, highBits) { - return new goog.math.Long(lowBits, highBits); -}; - - -/** - * Returns a Long representation of the given string, written using the given - * radix. - * @param {string} str The textual representation of the Long. - * @param {number=} opt_radix The radix in which the text is written. - * @return {!goog.math.Long} The corresponding Long value. - */ -goog.math.Long.fromString = function(str, opt_radix) { - if (str.length == 0) { - throw Error('number format error: empty string'); - } - - var radix = opt_radix || 10; - if (radix < 2 || 36 < radix) { - throw Error('radix out of range: ' + radix); - } - - if (str.charAt(0) == '-') { - return goog.math.Long.fromString(str.substring(1), radix).negate(); - } else if (str.indexOf('-') >= 0) { - throw Error('number format error: interior "-" character: ' + str); - } - - // Do several (8) digits each time through the loop, so as to - // minimize the calls to the very expensive emulated div. - var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8)); - - var result = goog.math.Long.getZero(); - for (var i = 0; i < str.length; i += 8) { - var size = Math.min(8, str.length - i); - var value = parseInt(str.substring(i, i + size), radix); - if (size < 8) { - var power = goog.math.Long.fromNumber(Math.pow(radix, size)); - result = result.multiply(power).add(goog.math.Long.fromNumber(value)); - } else { - result = result.multiply(radixToPower); - result = result.add(goog.math.Long.fromNumber(value)); - } - } - return result; -}; - - -// NOTE: the compiler should inline these constant values below and then remove -// these variables, so there should be no runtime penalty for these. - - -/** - * Number used repeated below in calculations. This must appear before the - * first call to any from* function below. - * @type {number} - * @private - */ -goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16; - - -/** - * @type {number} - * @private - */ -goog.math.Long.TWO_PWR_32_DBL_ = - goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_; - - -/** - * @type {number} - * @private - */ -goog.math.Long.TWO_PWR_64_DBL_ = - goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_; - - -/** - * @type {number} - * @private - */ -goog.math.Long.TWO_PWR_63_DBL_ = goog.math.Long.TWO_PWR_64_DBL_ / 2; - - -/** - * @return {!goog.math.Long} - * @public - */ -goog.math.Long.getZero = function() { - return goog.reflect.cache( - goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.ZERO, - function() { return goog.math.Long.fromInt(0); }); -}; - - -/** - * @return {!goog.math.Long} - * @public - */ -goog.math.Long.getOne = function() { - return goog.reflect.cache( - goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.ONE, - function() { return goog.math.Long.fromInt(1); }); -}; - - -/** - * @return {!goog.math.Long} - * @public - */ -goog.math.Long.getNegOne = function() { - return goog.reflect.cache( - goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.NEG_ONE, - function() { return goog.math.Long.fromInt(-1); }); -}; - - -/** - * @return {!goog.math.Long} - * @public - */ -goog.math.Long.getMaxValue = function() { - return goog.reflect.cache( - goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MAX_VALUE, - function() { - return goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0); - }); -}; - - -/** - * @return {!goog.math.Long} - * @public - */ -goog.math.Long.getMinValue = function() { - return goog.reflect.cache( - goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.MIN_VALUE, - function() { return goog.math.Long.fromBits(0, 0x80000000 | 0); }); -}; - - -/** - * @return {!goog.math.Long} - * @public - */ -goog.math.Long.getTwoPwr24 = function() { - return goog.reflect.cache( - goog.math.Long.valueCache_, goog.math.Long.ValueCacheId_.TWO_PWR_24, - function() { return goog.math.Long.fromInt(1 << 24); }); -}; - - -/** @return {number} The value, assuming it is a 32-bit integer. */ -goog.math.Long.prototype.toInt = function() { - return this.low_; -}; - - -/** @return {number} The closest floating-point representation to this value. */ -goog.math.Long.prototype.toNumber = function() { - return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ + - this.getLowBitsUnsigned(); -}; - - -/** - * @param {number=} opt_radix The radix in which the text should be written. - * @return {string} The textual representation of this value. - * @override - */ -goog.math.Long.prototype.toString = function(opt_radix) { - var radix = opt_radix || 10; - if (radix < 2 || 36 < radix) { - throw Error('radix out of range: ' + radix); - } - - if (this.isZero()) { - return '0'; - } - - if (this.isNegative()) { - if (this.equals(goog.math.Long.getMinValue())) { - // We need to change the Long value before it can be negated, so we remove - // the bottom-most digit in this base and then recurse to do the rest. - var radixLong = goog.math.Long.fromNumber(radix); - var div = this.div(radixLong); - var rem = div.multiply(radixLong).subtract(this); - return div.toString(radix) + rem.toInt().toString(radix); - } else { - return '-' + this.negate().toString(radix); - } - } - - // Do several (6) digits each time through the loop, so as to - // minimize the calls to the very expensive emulated div. - var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6)); - - var rem = this; - var result = ''; - while (true) { - var remDiv = rem.div(radixToPower); - // The right shifting fixes negative values in the case when - // intval >= 2^31; for more details see - // https://github.com/google/closure-library/pull/498 - var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0; - var digits = intval.toString(radix); - - rem = remDiv; - if (rem.isZero()) { - return digits + result; - } else { - while (digits.length < 6) { - digits = '0' + digits; - } - result = '' + digits + result; - } - } -}; - - -/** @return {number} The high 32-bits as a signed value. */ -goog.math.Long.prototype.getHighBits = function() { - return this.high_; -}; - - -/** @return {number} The low 32-bits as a signed value. */ -goog.math.Long.prototype.getLowBits = function() { - return this.low_; -}; - - -/** @return {number} The low 32-bits as an unsigned value. */ -goog.math.Long.prototype.getLowBitsUnsigned = function() { - return (this.low_ >= 0) ? this.low_ : - goog.math.Long.TWO_PWR_32_DBL_ + this.low_; -}; - - -/** - * @return {number} Returns the number of bits needed to represent the absolute - * value of this Long. - */ -goog.math.Long.prototype.getNumBitsAbs = function() { - if (this.isNegative()) { - if (this.equals(goog.math.Long.getMinValue())) { - return 64; - } else { - return this.negate().getNumBitsAbs(); - } - } else { - var val = this.high_ != 0 ? this.high_ : this.low_; - for (var bit = 31; bit > 0; bit--) { - if ((val & (1 << bit)) != 0) { - break; - } - } - return this.high_ != 0 ? bit + 33 : bit + 1; - } -}; - - -/** @return {boolean} Whether this value is zero. */ -goog.math.Long.prototype.isZero = function() { - return this.high_ == 0 && this.low_ == 0; -}; - - -/** @return {boolean} Whether this value is negative. */ -goog.math.Long.prototype.isNegative = function() { - return this.high_ < 0; -}; - - -/** @return {boolean} Whether this value is odd. */ -goog.math.Long.prototype.isOdd = function() { - return (this.low_ & 1) == 1; -}; - - -/** - * @param {goog.math.Long} other Long to compare against. - * @return {boolean} Whether this Long equals the other. - */ -goog.math.Long.prototype.equals = function(other) { - return (this.high_ == other.high_) && (this.low_ == other.low_); -}; - - -/** - * @param {goog.math.Long} other Long to compare against. - * @return {boolean} Whether this Long does not equal the other. - */ -goog.math.Long.prototype.notEquals = function(other) { - return (this.high_ != other.high_) || (this.low_ != other.low_); -}; - - -/** - * @param {goog.math.Long} other Long to compare against. - * @return {boolean} Whether this Long is less than the other. - */ -goog.math.Long.prototype.lessThan = function(other) { - return this.compare(other) < 0; -}; - - -/** - * @param {goog.math.Long} other Long to compare against. - * @return {boolean} Whether this Long is less than or equal to the other. - */ -goog.math.Long.prototype.lessThanOrEqual = function(other) { - return this.compare(other) <= 0; -}; - - -/** - * @param {goog.math.Long} other Long to compare against. - * @return {boolean} Whether this Long is greater than the other. - */ -goog.math.Long.prototype.greaterThan = function(other) { - return this.compare(other) > 0; -}; - - -/** - * @param {goog.math.Long} other Long to compare against. - * @return {boolean} Whether this Long is greater than or equal to the other. - */ -goog.math.Long.prototype.greaterThanOrEqual = function(other) { - return this.compare(other) >= 0; -}; - - -/** - * Compares this Long with the given one. - * @param {goog.math.Long} other Long to compare against. - * @return {number} 0 if they are the same, 1 if the this is greater, and -1 - * if the given one is greater. - */ -goog.math.Long.prototype.compare = function(other) { - if (this.equals(other)) { - return 0; - } - - var thisNeg = this.isNegative(); - var otherNeg = other.isNegative(); - if (thisNeg && !otherNeg) { - return -1; - } - if (!thisNeg && otherNeg) { - return 1; - } - - // at this point, the signs are the same, so subtraction will not overflow - if (this.subtract(other).isNegative()) { - return -1; - } else { - return 1; - } -}; - - -/** @return {!goog.math.Long} The negation of this value. */ -goog.math.Long.prototype.negate = function() { - if (this.equals(goog.math.Long.getMinValue())) { - return goog.math.Long.getMinValue(); - } else { - return this.not().add(goog.math.Long.getOne()); - } -}; - - -/** - * Returns the sum of this and the given Long. - * @param {goog.math.Long} other Long to add to this one. - * @return {!goog.math.Long} The sum of this and the given Long. - */ -goog.math.Long.prototype.add = function(other) { - // Divide each number into 4 chunks of 16 bits, and then sum the chunks. - - var a48 = this.high_ >>> 16; - var a32 = this.high_ & 0xFFFF; - var a16 = this.low_ >>> 16; - var a00 = this.low_ & 0xFFFF; - - var b48 = other.high_ >>> 16; - var b32 = other.high_ & 0xFFFF; - var b16 = other.low_ >>> 16; - var b00 = other.low_ & 0xFFFF; - - var c48 = 0, c32 = 0, c16 = 0, c00 = 0; - c00 += a00 + b00; - c16 += c00 >>> 16; - c00 &= 0xFFFF; - c16 += a16 + b16; - c32 += c16 >>> 16; - c16 &= 0xFFFF; - c32 += a32 + b32; - c48 += c32 >>> 16; - c32 &= 0xFFFF; - c48 += a48 + b48; - c48 &= 0xFFFF; - return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); -}; - - -/** - * Returns the difference of this and the given Long. - * @param {goog.math.Long} other Long to subtract from this. - * @return {!goog.math.Long} The difference of this and the given Long. - */ -goog.math.Long.prototype.subtract = function(other) { - return this.add(other.negate()); -}; - - -/** - * Returns the product of this and the given long. - * @param {goog.math.Long} other Long to multiply with this. - * @return {!goog.math.Long} The product of this and the other. - */ -goog.math.Long.prototype.multiply = function(other) { - if (this.isZero()) { - return goog.math.Long.getZero(); - } else if (other.isZero()) { - return goog.math.Long.getZero(); - } - - if (this.equals(goog.math.Long.getMinValue())) { - return other.isOdd() ? goog.math.Long.getMinValue() : - goog.math.Long.getZero(); - } else if (other.equals(goog.math.Long.getMinValue())) { - return this.isOdd() ? goog.math.Long.getMinValue() : - goog.math.Long.getZero(); - } - - if (this.isNegative()) { - if (other.isNegative()) { - return this.negate().multiply(other.negate()); - } else { - return this.negate().multiply(other).negate(); - } - } else if (other.isNegative()) { - return this.multiply(other.negate()).negate(); - } - - // If both longs are small, use float multiplication - if (this.lessThan(goog.math.Long.getTwoPwr24()) && - other.lessThan(goog.math.Long.getTwoPwr24())) { - return goog.math.Long.fromNumber(this.toNumber() * other.toNumber()); - } - - // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products. - // We can skip products that would overflow. - - var a48 = this.high_ >>> 16; - var a32 = this.high_ & 0xFFFF; - var a16 = this.low_ >>> 16; - var a00 = this.low_ & 0xFFFF; - - var b48 = other.high_ >>> 16; - var b32 = other.high_ & 0xFFFF; - var b16 = other.low_ >>> 16; - var b00 = other.low_ & 0xFFFF; - - var c48 = 0, c32 = 0, c16 = 0, c00 = 0; - c00 += a00 * b00; - c16 += c00 >>> 16; - c00 &= 0xFFFF; - c16 += a16 * b00; - c32 += c16 >>> 16; - c16 &= 0xFFFF; - c16 += a00 * b16; - c32 += c16 >>> 16; - c16 &= 0xFFFF; - c32 += a32 * b00; - c48 += c32 >>> 16; - c32 &= 0xFFFF; - c32 += a16 * b16; - c48 += c32 >>> 16; - c32 &= 0xFFFF; - c32 += a00 * b32; - c48 += c32 >>> 16; - c32 &= 0xFFFF; - c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48; - c48 &= 0xFFFF; - return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32); -}; - - -/** - * Returns this Long divided by the given one. - * @param {goog.math.Long} other Long by which to divide. - * @return {!goog.math.Long} This Long divided by the given one. - */ -goog.math.Long.prototype.div = function(other) { - if (other.isZero()) { - throw Error('division by zero'); - } else if (this.isZero()) { - return goog.math.Long.getZero(); - } - - if (this.equals(goog.math.Long.getMinValue())) { - if (other.equals(goog.math.Long.getOne()) || - other.equals(goog.math.Long.getNegOne())) { - return goog.math.Long.getMinValue(); // recall -MIN_VALUE == MIN_VALUE - } else if (other.equals(goog.math.Long.getMinValue())) { - return goog.math.Long.getOne(); - } else { - // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|. - var halfThis = this.shiftRight(1); - var approx = halfThis.div(other).shiftLeft(1); - if (approx.equals(goog.math.Long.getZero())) { - return other.isNegative() ? goog.math.Long.getOne() : - goog.math.Long.getNegOne(); - } else { - var rem = this.subtract(other.multiply(approx)); - var result = approx.add(rem.div(other)); - return result; - } - } - } else if (other.equals(goog.math.Long.getMinValue())) { - return goog.math.Long.getZero(); - } - - if (this.isNegative()) { - if (other.isNegative()) { - return this.negate().div(other.negate()); - } else { - return this.negate().div(other).negate(); - } - } else if (other.isNegative()) { - return this.div(other.negate()).negate(); - } - - // Repeat the following until the remainder is less than other: find a - // floating-point that approximates remainder / other *from below*, add this - // into the result, and subtract it from the remainder. It is critical that - // the approximate value is less than or equal to the real value so that the - // remainder never becomes negative. - var res = goog.math.Long.getZero(); - var rem = this; - while (rem.greaterThanOrEqual(other)) { - // Approximate the result of division. This may be a little greater or - // smaller than the actual value. - var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber())); - - // We will tweak the approximate result by changing it in the 48-th digit or - // the smallest non-fractional digit, whichever is larger. - var log2 = Math.ceil(Math.log(approx) / Math.LN2); - var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48); - - // Decrease the approximation until it is smaller than the remainder. Note - // that if it is too large, the product overflows and is negative. - var approxRes = goog.math.Long.fromNumber(approx); - var approxRem = approxRes.multiply(other); - while (approxRem.isNegative() || approxRem.greaterThan(rem)) { - approx -= delta; - approxRes = goog.math.Long.fromNumber(approx); - approxRem = approxRes.multiply(other); - } - - // We know the answer can't be zero... and actually, zero would cause - // infinite recursion since we would make no progress. - if (approxRes.isZero()) { - approxRes = goog.math.Long.getOne(); - } - - res = res.add(approxRes); - rem = rem.subtract(approxRem); - } - return res; -}; - - -/** - * Returns this Long modulo the given one. - * @param {goog.math.Long} other Long by which to mod. - * @return {!goog.math.Long} This Long modulo the given one. - */ -goog.math.Long.prototype.modulo = function(other) { - return this.subtract(this.div(other).multiply(other)); -}; - - -/** @return {!goog.math.Long} The bitwise-NOT of this value. */ -goog.math.Long.prototype.not = function() { - return goog.math.Long.fromBits(~this.low_, ~this.high_); -}; - - -/** - * Returns the bitwise-AND of this Long and the given one. - * @param {goog.math.Long} other The Long with which to AND. - * @return {!goog.math.Long} The bitwise-AND of this and the other. - */ -goog.math.Long.prototype.and = function(other) { - return goog.math.Long.fromBits( - this.low_ & other.low_, this.high_ & other.high_); -}; - - -/** - * Returns the bitwise-OR of this Long and the given one. - * @param {goog.math.Long} other The Long with which to OR. - * @return {!goog.math.Long} The bitwise-OR of this and the other. - */ -goog.math.Long.prototype.or = function(other) { - return goog.math.Long.fromBits( - this.low_ | other.low_, this.high_ | other.high_); -}; - - -/** - * Returns the bitwise-XOR of this Long and the given one. - * @param {goog.math.Long} other The Long with which to XOR. - * @return {!goog.math.Long} The bitwise-XOR of this and the other. - */ -goog.math.Long.prototype.xor = function(other) { - return goog.math.Long.fromBits( - this.low_ ^ other.low_, this.high_ ^ other.high_); -}; - - -/** - * Returns this Long with bits shifted to the left by the given amount. - * @param {number} numBits The number of bits by which to shift. - * @return {!goog.math.Long} This shifted to the left by the given amount. - */ -goog.math.Long.prototype.shiftLeft = function(numBits) { - numBits &= 63; - if (numBits == 0) { - return this; - } else { - var low = this.low_; - if (numBits < 32) { - var high = this.high_; - return goog.math.Long.fromBits( - low << numBits, (high << numBits) | (low >>> (32 - numBits))); - } else { - return goog.math.Long.fromBits(0, low << (numBits - 32)); - } - } -}; - - -/** - * Returns this Long with bits shifted to the right by the given amount. - * The new leading bits match the current sign bit. - * @param {number} numBits The number of bits by which to shift. - * @return {!goog.math.Long} This shifted to the right by the given amount. - */ -goog.math.Long.prototype.shiftRight = function(numBits) { - numBits &= 63; - if (numBits == 0) { - return this; - } else { - var high = this.high_; - if (numBits < 32) { - var low = this.low_; - return goog.math.Long.fromBits( - (low >>> numBits) | (high << (32 - numBits)), high >> numBits); - } else { - return goog.math.Long.fromBits( - high >> (numBits - 32), high >= 0 ? 0 : -1); - } - } -}; - - -/** - * Returns this Long with bits shifted to the right by the given amount, with - * zeros placed into the new leading bits. - * @param {number} numBits The number of bits by which to shift. - * @return {!goog.math.Long} This shifted to the right by the given amount, with - * zeros placed into the new leading bits. - */ -goog.math.Long.prototype.shiftRightUnsigned = function(numBits) { - numBits &= 63; - if (numBits == 0) { - return this; - } else { - var high = this.high_; - if (numBits < 32) { - var low = this.low_; - return goog.math.Long.fromBits( - (low >>> numBits) | (high << (32 - numBits)), high >>> numBits); - } else if (numBits == 32) { - return goog.math.Long.fromBits(high, 0); - } else { - return goog.math.Long.fromBits(high >>> (numBits - 32), 0); - } - } -}; - - -/** - * @enum {number} Ids of commonly requested Long instances. - * @private - */ -goog.math.Long.ValueCacheId_ = { - MAX_VALUE: 1, - MIN_VALUE: 2, - ZERO: 3, - ONE: 4, - NEG_ONE: 5, - TWO_PWR_24: 6 -}; diff --git a/static/src/assets/viz/1/goog/math/math.js b/static/src/assets/viz/1/goog/math/math.js deleted file mode 100644 index 95e5fb5..0000000 --- a/static/src/assets/viz/1/goog/math/math.js +++ /dev/null @@ -1,447 +0,0 @@ -// Copyright 2006 The Closure Library Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS-IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/** - * @fileoverview Additional mathematical functions. - */ - -goog.provide('goog.math'); - -goog.require('goog.array'); -goog.require('goog.asserts'); - - -/** - * Returns a random integer greater than or equal to 0 and less than {@code a}. - * @param {number} a The upper bound for the random integer (exclusive). - * @return {number} A random integer N such that 0 <= N < a. - */ -goog.math.randomInt = function(a) { - return Math.floor(Math.random() * a); -}; - - -/** - * Returns a random number greater than or equal to {@code a} and less than - * {@code b}. - * @param {number} a The lower bound for the random number (inclusive). - * @param {number} b The upper bound for the random number (exclusive). - * @return {number} A random number N such that a <= N < b. - */ -goog.math.uniformRandom = function(a, b) { - return a + Math.random() * (b - a); -}; - - -/** - * Takes a number and clamps it to within the provided bounds. - * @param {number} value The input number. - * @param {number} min The minimum value to return. - * @param {number} max The maximum value to return. - * @return {number} The input number if it is within bounds, or the nearest - * number within the bounds. - */ -goog.math.clamp = function(value, min, max) { - return Math.min(Math.max(value, min), max); -}; - - -/** - * The % operator in JavaScript returns the remainder of a / b, but differs from - * some other languages in that the result will have the same sign as the - * dividend. For example, -1 % 8 == -1, whereas in some other languages - * (such as Python) the result would be 7. This function emulates the more - * correct modulo behavior, which is useful for certain applications such as - * calculating an offset index in a circular list. - * - * @param {number} a The dividend. - * @param {number} b The divisor. - * @return {number} a % b where the result is between 0 and b (either 0 <= x < b - * or b < x <= 0, depending on the sign of b). - */ -goog.math.modulo = function(a, b) { - var r = a % b; - // If r and b differ in sign, add b to wrap the result to the correct sign. - return (r * b < 0) ? r + b : r; -}; - - -/** - * Performs linear interpolation between values a and b. Returns the value - * between a and b proportional to x (when x is between 0 and 1. When x is - * outside this range, the return value is a linear extrapolation). - * @param {number} a A number. - * @param {number} b A number. - * @param {number} x The proportion between a and b. - * @return {number} The interpolated value between a and b. - */ -goog.math.lerp = function(a, b, x) { - return a + x * (b - a); -}; - - -/** - * Tests whether the two values are equal to each other, within a certain - * tolerance to adjust for floating point errors. - * @param {number} a A number. - * @param {number} b A number. - * @param {number=} opt_tolerance Optional tolerance range. Defaults - * to 0.000001. If specified, should be greater than 0. - * @return {boolean} Whether {@code a} and {@code b} are nearly equal. - */ -goog.math.nearlyEquals = function(a, b, opt_tolerance) { - return Math.abs(a - b) <= (opt_tolerance || 0.000001); -}; - - -// TODO(user): Rename to normalizeAngle, retaining old name as deprecated -// alias. -/** - * Normalizes an angle to be in range [0-360). Angles outside this range will - * be normalized to be the equivalent angle with that range. - * @param {number} angle Angle in degrees. - * @return {number} Standardized angle. - */ -goog.math.standardAngle = function(angle) { - return goog.math.modulo(angle, 360); -}; - - -/** - * Normalizes an angle to be in range [0-2*PI). Angles outside this range will - * be normalized to be the equivalent angle with that range. - * @param {number} angle Angle in radians. - * @return {number} Standardized angle. - */ -goog.math.standardAngleInRadians = function(angle) { - return goog.math.modulo(angle, 2 * Math.PI); -}; - - -/** - * Converts degrees to radians. - * @param {number} angleDegrees Angle in degrees. - * @return {number} Angle in radians. - */ -goog.math.toRadians = function(angleDegrees) { - return angleDegrees * Math.PI / 180; -}; - - -/** - * Converts radians to degrees. - * @param {number} angleRadians Angle in radians. - * @return {number} Angle in degrees. - */ -goog.math.toDegrees = function(angleRadians) { - return angleRadians * 180 / Math.PI; -}; - - -/** - * For a given angle and radius, finds the X portion of the offset. - * @param {number} degrees Angle in degrees (zero points in +X direction). - * @param {number} radius Radius. - * @return {number} The x-distance for the angle and radius. - */ -goog.math.angleDx = function(degrees, radius) { - return radius * Math.cos(goog.math.toRadians(degrees)); -}; - - -/** - * For a given angle and radius, finds the Y portion of the offset. - * @param {number} degrees Angle in degrees (zero points in +X direction). - * @param {number} radius Radius. - * @return {number} The y-distance for the angle and radius. - */ -goog.math.angleDy = function(degrees, radius) { - return radius * Math.sin(goog.math.toRadians(degrees)); -}; - - -/** - * Computes the angle between two points (x1,y1) and (x2,y2). - * Angle zero points in the +X direction, 90 degrees points in the +Y - * direction (down) and from there we grow clockwise towards 360 degrees. - * @param {number} x1 x of first point. - * @param {number} y1 y of first point. - * @param {number} x2 x of second point. - * @param {number} y2 y of second point. - * @return {number} Standardized angle in degrees of the vector from - * x1,y1 to x2,y2. - */ -goog.math.angle = function(x1, y1, x2, y2) { - return goog.math.standardAngle( - goog.math.toDegrees(Math.atan2(y2 - y1, x2 - x1))); -}; - - -/** - * Computes the difference between startAngle and endAngle (angles in degrees). - * @param {number} startAngle Start angle in degrees. - * @param {number} endAngle End angle in degrees. - * @return {number} The number of degrees that when added to - * startAngle will result in endAngle. Positive numbers mean that the - * direction is clockwise. Negative numbers indicate a counter-clockwise - * direction. - * The shortest route (clockwise vs counter-clockwise) between the angles - * is used. - * When the difference is 180 degrees, the function returns 180 (not -180) - * angleDifference(30, 40) is 10, and angleDifference(40, 30) is -10. - * angleDifference(350, 10) is 20, and angleDifference(10, 350) is -20. - */ -goog.math.angleDifference = function(startAngle, endAngle) { - var d = - goog.math.standardAngle(endAngle) - goog.math.standardAngle(startAngle); - if (d > 180) { - d = d - 360; - } else if (d <= -180) { - d = 360 + d; - } - return d; -}; - - -/** - * Returns the sign of a number as per the "sign" or "signum" function. - * @param {number} x The number to take the sign of. - * @return {number} -1 when negative, 1 when positive, 0 when 0. Preserves - * signed zeros and NaN. - */ -goog.math.sign = Math.sign || function(x) { - if (x > 0) { - return 1; - } - if (x < 0) { - return -1; - } - return x; // Preserves signed zeros and NaN. -}; - - -/** - * JavaScript implementation of Longest Common Subsequence problem. - * http://en.wikipedia.org/wiki/Longest_common_subsequence - * - * Returns the longest possible array that is subarray of both of given arrays. - * - * @param {IArrayLike<S>} array1 First array of objects. - * @param {IArrayLike<T>} array2 Second array of objects. - * @param {Function=} opt_compareFn Function that acts as a custom comparator - * for the array ojects. Function should return true if objects are equal, - * otherwise false. - * @param {Function=} opt_collectorFn Function used to decide what to return - * as a result subsequence. It accepts 2 arguments: index of common element - * in the first array and index in the second. The default function returns - * element from the first array. - * @return {!Array<S|T>} A list of objects that are common to both arrays - * such that there is no common subsequence with size greater than the - * length of the list. - * @template S,T - */ -goog.math.longestCommonSubsequence = function( - array1, array2, opt_compareFn, opt_collectorFn) { - - var compare = opt_compareFn || function(a, b) { return a == b; }; - - var collect = opt_collectorFn || function(i1, i2) { return array1[i1]; }; - - var length1 = array1.length; - var length2 = array2.length; - - var arr = []; - for (var i = 0; i < length1 + 1; i++) { - arr[i] = []; - arr[i][0] = 0; - } - - for (var j = 0; j < length2 + 1; j++) { - arr[0][j] = 0; - } - - for (i = 1; i <= length1; i++) { - for (j = 1; j <= length2; j++) { - if (compare(array1[i - 1], array2[j - 1])) { - arr[i][j] = arr[i - 1][j - 1] + 1; - } else { - arr[i][j] = Math.max(arr[i - 1][j], arr[i][j - 1]); - } - } - } - - // Backtracking - var result = []; - var i = length1, j = length2; - while (i > 0 && j > 0) { - if (compare(array1[i - 1], array2[j - 1])) { - result.unshift(collect(i - 1, j - 1)); - i--; - j--; - } else { - if (arr[i - 1][j] > arr[i][j - 1]) { - i--; - } else { - j--; - } - } - } - - return result; -}; - - -/** - * Returns the sum of the arguments. - * @param {...number} var_args Numbers to add. - * @return {number} The sum of the arguments (0 if no arguments were provided, - * {@code NaN} if any of the arguments is not a valid number). - */ -goog.math.sum = function(var_args) { - return /** @type {number} */ ( - goog.array.reduce( - arguments, function(sum, value) { return sum + value; }, 0)); -}; - - -/** - * Returns the arithmetic mean of the arguments. - * @param {...number} var_args Numbers to average. - * @return {number} The average of the arguments ({@code NaN} if no arguments - * were provided or any of the arguments is not a valid number). - */ -goog.math.average = function(var_args) { - return goog.math.sum.apply(null, arguments) / arguments.length; -}; - - -/** - * Returns the unbiased sample variance of the arguments. For a definition, - * see e.g. http://en.wikipedia.org/wiki/Variance - * @param {...number} var_args Number samples to analyze. - * @return {number} The unbiased sample variance of the arguments (0 if fewer - * than two samples were provided, or {@code NaN} if any of the samples is - * not a valid number). - */ -goog.math.sampleVariance = function(var_args) { - var sampleSize = arguments.length; - if (sampleSize < 2) { - return 0; - } - - var mean = goog.math.average.apply(null, arguments); - var variance = - goog.math.sum.apply(null, goog.array.map(arguments, function(val) { - return Math.pow(val - mean, 2); - })) / (sampleSize - 1); - - return variance; -}; - - -/** - * Returns the sample standard deviation of the arguments. For a definition of - * sample standard deviation, see e.g. - * http://en.wikipedia.org/wiki/Standard_deviation - * @param {...number} var_args Number samples to analyze. - * @return {number} The sample standard deviation of the arguments (0 if fewer - * than two samples were provided, or {@code NaN} if any of the samples is - * not a valid number). - */ -goog.math.standardDeviation = function(var_args) { - return Math.sqrt(goog.math.sampleVariance.apply(null, arguments)); -}; - - -/** - * Returns whether the supplied number represents an integer, i.e. that is has - * no fractional component. No range-checking is performed on the number. - * @param {number} num The number to test. - * @return {boolean} Whether {@code num} is an integer. - */ -goog.math.isInt = function(num) { - return isFinite(num) && num % 1 == 0; -}; - - -/** - * Returns whether the supplied number is finite and not NaN. - * @param {number} num The number to test. - * @return {boolean} Whether {@code num} is a finite number. - */ -goog.math.isFiniteNumber = function(num) { - return isFinite(num) && !isNaN(num); -}; - - -/** - * @param {number} num The number to test. - * @return {boolean} Whether it is negative zero. - */ -goog.math.isNegativeZero = function(num) { - return num == 0 && 1 / num < 0; -}; - - -/** - * Returns the precise value of floor(log10(num)). - * Simpler implementations didn't work because of floating point rounding - * errors. For example - * <ul> - * <li>Math.floor(Math.log(num) / Math.LN10) is off by one for num == 1e+3. - * <li>Math.floor(Math.log(num) * Math.LOG10E) is off by one for num == 1e+15. - * <li>Math.floor(Math.log10(num)) is off by one for num == 1e+15 - 1. - * </ul> - * @param {number} num A floating point number. - * @return {number} Its logarithm to base 10 rounded down to the nearest - * integer if num > 0. -Infinity if num == 0. NaN if num < 0. - */ -goog.math.log10Floor = function(num) { - if (num > 0) { - var x = Math.round(Math.log(num) * Math.LOG10E); - return x - (parseFloat('1e' + x) > num ? 1 : 0); - } - return num == 0 ? -Infinity : NaN; -}; - - -/** - * A tweaked variant of {@code Math.floor} which tolerates if the passed number - * is infinitesimally smaller than the closest integer. It often happens with - * the results of floating point calculations because of the finite precision - * of the intermediate results. For example {@code Math.floor(Math.log(1000) / - * Math.LN10) == 2}, not 3 as one would expect. - * @param {number} num A number. - * @param {number=} opt_epsilon An infinitesimally small positive number, the - * rounding error to tolerate. - * @return {number} The largest integer less than or equal to {@code num}. - */ -goog.math.safeFloor = function(num, opt_epsilon) { - goog.asserts.assert(!goog.isDef(opt_epsilon) || opt_epsilon > 0); - return Math.floor(num + (opt_epsilon || 2e-15)); -}; - - -/** - * A tweaked variant of {@code Math.ceil}. See {@code goog.math.safeFloor} for - * details. - * @param {number} num A number. - * @param {number=} opt_epsilon An infinitesimally small positive number, the - * rounding error to tolerate. - * @return {number} The smallest integer greater than or equal to {@code num}. - */ -goog.math.safeCeil = function(num, opt_epsilon) { - goog.asserts.assert(!goog.isDef(opt_epsilon) || opt_epsilon > 0); - return Math.ceil(num - (opt_epsilon || 2e-15)); -}; diff --git a/static/src/assets/viz/1/goog/math/size.js b/static/src/assets/viz/1/goog/math/size.js deleted file mode 100644 index f5c379b..0000000 --- a/static/src/assets/viz/1/goog/math/size.js +++ /dev/null @@ -1,227 +0,0 @@ -// Copyright 2007 The Closure Library Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS-IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/** - * @fileoverview A utility class for representing two-dimensional sizes. - * @author brenneman@google.com (Shawn Brenneman) - */ - - -goog.provide('goog.math.Size'); - - - -/** - * Class for representing sizes consisting of a width and height. Undefined - * width and height support is deprecated and results in compiler warning. - * @param {number} width Width. - * @param {number} height Height. - * @struct - * @constructor - */ -goog.math.Size = function(width, height) { - /** - * Width - * @type {number} - */ - this.width = width; - - /** - * Height - * @type {number} - */ - this.height = height; -}; - - -/** - * Compares sizes for equality. - * @param {goog.math.Size} a A Size. - * @param {goog.math.Size} b A Size. - * @return {boolean} True iff the sizes have equal widths and equal - * heights, or if both are null. - */ -goog.math.Size.equals = function(a, b) { - if (a == b) { - return true; - } - if (!a || !b) { - return false; - } - return a.width == b.width && a.height == b.height; -}; - - -/** - * @return {!goog.math.Size} A new copy of the Size. - */ -goog.math.Size.prototype.clone = function() { - return new goog.math.Size(this.width, this.height); -}; - - -if (goog.DEBUG) { - /** - * Returns a nice string representing size. - * @return {string} In the form (50 x 73). - * @override - */ - goog.math.Size.prototype.toString = function() { - return '(' + this.width + ' x ' + this.height + ')'; - }; -} - - -/** - * @return {number} The longer of the two dimensions in the size. - */ -goog.math.Size.prototype.getLongest = function() { - return Math.max(this.width, this.height); -}; - - -/** - * @return {number} The shorter of the two dimensions in the size. - */ -goog.math.Size.prototype.getShortest = function() { - return Math.min(this.width, this.height); -}; - - -/** - * @return {number} The area of the size (width * height). - */ -goog.math.Size.prototype.area = function() { - return this.width * this.height; -}; - - -/** - * @return {number} The perimeter of the size (width + height) * 2. - */ -goog.math.Size.prototype.perimeter = function() { - return (this.width + this.height) * 2; -}; - - -/** - * @return {number} The ratio of the size's width to its height. - */ -goog.math.Size.prototype.aspectRatio = function() { - return this.width / this.height; -}; - - -/** - * @return {boolean} True if the size has zero area, false if both dimensions - * are non-zero numbers. - */ -goog.math.Size.prototype.isEmpty = function() { - return !this.area(); -}; - - -/** - * Clamps the width and height parameters upward to integer values. - * @return {!goog.math.Size} This size with ceil'd components. - */ -goog.math.Size.prototype.ceil = function() { - this.width = Math.ceil(this.width); - this.height = Math.ceil(this.height); - return this; -}; - - -/** - * @param {!goog.math.Size} target The target size. - * @return {boolean} True if this Size is the same size or smaller than the - * target size in both dimensions. - */ -goog.math.Size.prototype.fitsInside = function(target) { - return this.width <= target.width && this.height <= target.height; -}; - - -/** - * Clamps the width and height parameters downward to integer values. - * @return {!goog.math.Size} This size with floored components. - */ -goog.math.Size.prototype.floor = function() { - this.width = Math.floor(this.width); - this.height = Math.floor(this.height); - return this; -}; - - -/** - * Rounds the width and height parameters to integer values. - * @return {!goog.math.Size} This size with rounded components. - */ -goog.math.Size.prototype.round = function() { - this.width = Math.round(this.width); - this.height = Math.round(this.height); - return this; -}; - - -/** - * Scales this size by the given scale factors. The width and height are scaled - * by {@code sx} and {@code opt_sy} respectively. If {@code opt_sy} is not - * given, then {@code sx} is used for both the width and height. - * @param {number} sx The scale factor to use for the width. - * @param {number=} opt_sy The scale factor to use for the height. - * @return {!goog.math.Size} This Size object after scaling. - */ -goog.math.Size.prototype.scale = function(sx, opt_sy) { - var sy = goog.isNumber(opt_sy) ? opt_sy : sx; - this.width *= sx; - this.height *= sy; - return this; -}; - - -/** - * Uniformly scales the size to perfectly cover the dimensions of a given size. - * If the size is already larger than the target, it will be scaled down to the - * minimum size at which it still covers the entire target. The original aspect - * ratio will be preserved. - * - * This function assumes that both Sizes contain strictly positive dimensions. - * @param {!goog.math.Size} target The target size. - * @return {!goog.math.Size} This Size object, after optional scaling. - */ -goog.math.Size.prototype.scaleToCover = function(target) { - var s = this.aspectRatio() <= target.aspectRatio() ? - target.width / this.width : - target.height / this.height; - - return this.scale(s); -}; - - -/** - * Uniformly scales the size to fit inside the dimensions of a given size. The - * original aspect ratio will be preserved. - * - * This function assumes that both Sizes contain strictly positive dimensions. - * @param {!goog.math.Size} target The target size. - * @return {!goog.math.Size} This Size object, after optional scaling. - */ -goog.math.Size.prototype.scaleToFit = function(target) { - var s = this.aspectRatio() > target.aspectRatio() ? - target.width / this.width : - target.height / this.height; - - return this.scale(s); -}; |