summaryrefslogtreecommitdiff
path: root/src/assets/viz/2/goog/math/integer.js
diff options
context:
space:
mode:
Diffstat (limited to 'src/assets/viz/2/goog/math/integer.js')
-rw-r--r--src/assets/viz/2/goog/math/integer.js808
1 files changed, 0 insertions, 808 deletions
diff --git a/src/assets/viz/2/goog/math/integer.js b/src/assets/viz/2/goog/math/integer.js
deleted file mode 100644
index 6907546..0000000
--- a/src/assets/viz/2/goog/math/integer.js
+++ /dev/null
@@ -1,808 +0,0 @@
-// Copyright 2009 The Closure Library Authors. All Rights Reserved.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS-IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-/**
- * @fileoverview Defines an Integer class for representing (potentially)
- * infinite length two's-complement integer values.
- *
- * For the specific case of 64-bit integers, use goog.math.Long, which is more
- * efficient.
- *
- */
-
-goog.provide('goog.math.Integer');
-
-
-
-/**
- * Constructs a two's-complement integer an array containing bits of the
- * integer in 32-bit (signed) pieces, given in little-endian order (i.e.,
- * lowest-order bits in the first piece), and the sign of -1 or 0.
- *
- * See the from* functions below for other convenient ways of constructing
- * Integers.
- *
- * The internal representation of an integer is an array of 32-bit signed
- * pieces, along with a sign (0 or -1) that indicates the contents of all the
- * other 32-bit pieces out to infinity. We use 32-bit pieces because these are
- * the size of integers on which Javascript performs bit-operations. For
- * operations like addition and multiplication, we split each number into 16-bit
- * pieces, which can easily be multiplied within Javascript's floating-point
- * representation without overflow or change in sign.
- *
- * @struct
- * @constructor
- * @param {Array<number>} bits Array containing the bits of the number.
- * @param {number} sign The sign of the number: -1 for negative and 0 positive.
- * @final
- */
-goog.math.Integer = function(bits, sign) {
- /**
- * @type {!Array<number>}
- * @private
- */
- this.bits_ = [];
-
- /**
- * @type {number}
- * @private
- */
- this.sign_ = sign;
-
- // Copy the 32-bit signed integer values passed in. We prune out those at the
- // top that equal the sign since they are redundant.
- var top = true;
- for (var i = bits.length - 1; i >= 0; i--) {
- var val = bits[i] | 0;
- if (!top || val != sign) {
- this.bits_[i] = val;
- top = false;
- }
- }
-};
-
-
-// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
-// from* methods on which they depend.
-
-
-/**
- * A cache of the Integer representations of small integer values.
- * @type {!Object}
- * @private
- */
-goog.math.Integer.IntCache_ = {};
-
-
-/**
- * Returns an Integer representing the given (32-bit) integer value.
- * @param {number} value A 32-bit integer value.
- * @return {!goog.math.Integer} The corresponding Integer value.
- */
-goog.math.Integer.fromInt = function(value) {
- if (-128 <= value && value < 128) {
- var cachedObj = goog.math.Integer.IntCache_[value];
- if (cachedObj) {
- return cachedObj;
- }
- }
-
- var obj = new goog.math.Integer([value | 0], value < 0 ? -1 : 0);
- if (-128 <= value && value < 128) {
- goog.math.Integer.IntCache_[value] = obj;
- }
- return obj;
-};
-
-
-/**
- * Returns an Integer representing the given value, provided that it is a finite
- * number. Otherwise, zero is returned.
- * @param {number} value The value in question.
- * @return {!goog.math.Integer} The corresponding Integer value.
- */
-goog.math.Integer.fromNumber = function(value) {
- if (isNaN(value) || !isFinite(value)) {
- return goog.math.Integer.ZERO;
- } else if (value < 0) {
- return goog.math.Integer.fromNumber(-value).negate();
- } else {
- var bits = [];
- var pow = 1;
- for (var i = 0; value >= pow; i++) {
- bits[i] = (value / pow) | 0;
- pow *= goog.math.Integer.TWO_PWR_32_DBL_;
- }
- return new goog.math.Integer(bits, 0);
- }
-};
-
-
-/**
- * Returns a Integer representing the value that comes by concatenating the
- * given entries, each is assumed to be 32 signed bits, given in little-endian
- * order (lowest order bits in the lowest index), and sign-extending the highest
- * order 32-bit value.
- * @param {Array<number>} bits The bits of the number, in 32-bit signed pieces,
- * in little-endian order.
- * @return {!goog.math.Integer} The corresponding Integer value.
- */
-goog.math.Integer.fromBits = function(bits) {
- var high = bits[bits.length - 1];
- return new goog.math.Integer(bits, high & (1 << 31) ? -1 : 0);
-};
-
-
-/**
- * Returns an Integer representation of the given string, written using the
- * given radix.
- * @param {string} str The textual representation of the Integer.
- * @param {number=} opt_radix The radix in which the text is written.
- * @return {!goog.math.Integer} The corresponding Integer value.
- */
-goog.math.Integer.fromString = function(str, opt_radix) {
- if (str.length == 0) {
- throw Error('number format error: empty string');
- }
-
- var radix = opt_radix || 10;
- if (radix < 2 || 36 < radix) {
- throw Error('radix out of range: ' + radix);
- }
-
- if (str.charAt(0) == '-') {
- return goog.math.Integer.fromString(str.substring(1), radix).negate();
- } else if (str.indexOf('-') >= 0) {
- throw Error('number format error: interior "-" character');
- }
-
- // Do several (8) digits each time through the loop, so as to
- // minimize the calls to the very expensive emulated div.
- var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 8));
-
- var result = goog.math.Integer.ZERO;
- for (var i = 0; i < str.length; i += 8) {
- var size = Math.min(8, str.length - i);
- var value = parseInt(str.substring(i, i + size), radix);
- if (size < 8) {
- var power = goog.math.Integer.fromNumber(Math.pow(radix, size));
- result = result.multiply(power).add(goog.math.Integer.fromNumber(value));
- } else {
- result = result.multiply(radixToPower);
- result = result.add(goog.math.Integer.fromNumber(value));
- }
- }
- return result;
-};
-
-
-/**
- * A number used repeatedly in calculations. This must appear before the first
- * call to the from* functions below.
- * @type {number}
- * @private
- */
-goog.math.Integer.TWO_PWR_32_DBL_ = (1 << 16) * (1 << 16);
-
-
-/** @type {!goog.math.Integer} */
-goog.math.Integer.ZERO = goog.math.Integer.fromInt(0);
-
-
-/** @type {!goog.math.Integer} */
-goog.math.Integer.ONE = goog.math.Integer.fromInt(1);
-
-
-/**
- * @type {!goog.math.Integer}
- * @private
- */
-goog.math.Integer.TWO_PWR_24_ = goog.math.Integer.fromInt(1 << 24);
-
-
-/**
- * Returns the value, assuming it is a 32-bit integer.
- * @return {number} The corresponding int value.
- */
-goog.math.Integer.prototype.toInt = function() {
- return this.bits_.length > 0 ? this.bits_[0] : this.sign_;
-};
-
-
-/** @return {number} The closest floating-point representation to this value. */
-goog.math.Integer.prototype.toNumber = function() {
- if (this.isNegative()) {
- return -this.negate().toNumber();
- } else {
- var val = 0;
- var pow = 1;
- for (var i = 0; i < this.bits_.length; i++) {
- val += this.getBitsUnsigned(i) * pow;
- pow *= goog.math.Integer.TWO_PWR_32_DBL_;
- }
- return val;
- }
-};
-
-
-/**
- * @param {number=} opt_radix The radix in which the text should be written.
- * @return {string} The textual representation of this value.
- * @override
- */
-goog.math.Integer.prototype.toString = function(opt_radix) {
- var radix = opt_radix || 10;
- if (radix < 2 || 36 < radix) {
- throw Error('radix out of range: ' + radix);
- }
-
- if (this.isZero()) {
- return '0';
- } else if (this.isNegative()) {
- return '-' + this.negate().toString(radix);
- }
-
- // Do several (6) digits each time through the loop, so as to
- // minimize the calls to the very expensive emulated div.
- var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 6));
-
- var rem = this;
- var result = '';
- while (true) {
- var remDiv = rem.divide(radixToPower);
- // The right shifting fixes negative values in the case when
- // intval >= 2^31; for more details see
- // https://github.com/google/closure-library/pull/498
- var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0;
- var digits = intval.toString(radix);
-
- rem = remDiv;
- if (rem.isZero()) {
- return digits + result;
- } else {
- while (digits.length < 6) {
- digits = '0' + digits;
- }
- result = '' + digits + result;
- }
- }
-};
-
-
-/**
- * Returns the index-th 32-bit (signed) piece of the Integer according to
- * little-endian order (i.e., index 0 contains the smallest bits).
- * @param {number} index The index in question.
- * @return {number} The requested 32-bits as a signed number.
- */
-goog.math.Integer.prototype.getBits = function(index) {
- if (index < 0) {
- return 0; // Allowing this simplifies bit shifting operations below...
- } else if (index < this.bits_.length) {
- return this.bits_[index];
- } else {
- return this.sign_;
- }
-};
-
-
-/**
- * Returns the index-th 32-bit piece as an unsigned number.
- * @param {number} index The index in question.
- * @return {number} The requested 32-bits as an unsigned number.
- */
-goog.math.Integer.prototype.getBitsUnsigned = function(index) {
- var val = this.getBits(index);
- return val >= 0 ? val : goog.math.Integer.TWO_PWR_32_DBL_ + val;
-};
-
-
-/** @return {number} The sign bit of this number, -1 or 0. */
-goog.math.Integer.prototype.getSign = function() {
- return this.sign_;
-};
-
-
-/** @return {boolean} Whether this value is zero. */
-goog.math.Integer.prototype.isZero = function() {
- if (this.sign_ != 0) {
- return false;
- }
- for (var i = 0; i < this.bits_.length; i++) {
- if (this.bits_[i] != 0) {
- return false;
- }
- }
- return true;
-};
-
-
-/** @return {boolean} Whether this value is negative. */
-goog.math.Integer.prototype.isNegative = function() {
- return this.sign_ == -1;
-};
-
-
-/** @return {boolean} Whether this value is odd. */
-goog.math.Integer.prototype.isOdd = function() {
- return (this.bits_.length == 0) && (this.sign_ == -1) ||
- (this.bits_.length > 0) && ((this.bits_[0] & 1) != 0);
-};
-
-
-/**
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {boolean} Whether this Integer equals the other.
- */
-goog.math.Integer.prototype.equals = function(other) {
- if (this.sign_ != other.sign_) {
- return false;
- }
- var len = Math.max(this.bits_.length, other.bits_.length);
- for (var i = 0; i < len; i++) {
- if (this.getBits(i) != other.getBits(i)) {
- return false;
- }
- }
- return true;
-};
-
-
-/**
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {boolean} Whether this Integer does not equal the other.
- */
-goog.math.Integer.prototype.notEquals = function(other) {
- return !this.equals(other);
-};
-
-
-/**
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {boolean} Whether this Integer is greater than the other.
- */
-goog.math.Integer.prototype.greaterThan = function(other) {
- return this.compare(other) > 0;
-};
-
-
-/**
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {boolean} Whether this Integer is greater than or equal to the other.
- */
-goog.math.Integer.prototype.greaterThanOrEqual = function(other) {
- return this.compare(other) >= 0;
-};
-
-
-/**
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {boolean} Whether this Integer is less than the other.
- */
-goog.math.Integer.prototype.lessThan = function(other) {
- return this.compare(other) < 0;
-};
-
-
-/**
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {boolean} Whether this Integer is less than or equal to the other.
- */
-goog.math.Integer.prototype.lessThanOrEqual = function(other) {
- return this.compare(other) <= 0;
-};
-
-
-/**
- * Compares this Integer with the given one.
- * @param {goog.math.Integer} other Integer to compare against.
- * @return {number} 0 if they are the same, 1 if the this is greater, and -1
- * if the given one is greater.
- */
-goog.math.Integer.prototype.compare = function(other) {
- var diff = this.subtract(other);
- if (diff.isNegative()) {
- return -1;
- } else if (diff.isZero()) {
- return 0;
- } else {
- return +1;
- }
-};
-
-
-/**
- * Returns an integer with only the first numBits bits of this value, sign
- * extended from the final bit.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Integer} The shorted integer value.
- */
-goog.math.Integer.prototype.shorten = function(numBits) {
- var arr_index = (numBits - 1) >> 5;
- var bit_index = (numBits - 1) % 32;
- var bits = [];
- for (var i = 0; i < arr_index; i++) {
- bits[i] = this.getBits(i);
- }
- var sigBits = bit_index == 31 ? 0xFFFFFFFF : (1 << (bit_index + 1)) - 1;
- var val = this.getBits(arr_index) & sigBits;
- if (val & (1 << bit_index)) {
- val |= 0xFFFFFFFF - sigBits;
- bits[arr_index] = val;
- return new goog.math.Integer(bits, -1);
- } else {
- bits[arr_index] = val;
- return new goog.math.Integer(bits, 0);
- }
-};
-
-
-/** @return {!goog.math.Integer} The negation of this value. */
-goog.math.Integer.prototype.negate = function() {
- return this.not().add(goog.math.Integer.ONE);
-};
-
-
-/**
- * Returns the sum of this and the given Integer.
- * @param {goog.math.Integer} other The Integer to add to this.
- * @return {!goog.math.Integer} The Integer result.
- */
-goog.math.Integer.prototype.add = function(other) {
- var len = Math.max(this.bits_.length, other.bits_.length);
- var arr = [];
- var carry = 0;
-
- for (var i = 0; i <= len; i++) {
- var a1 = this.getBits(i) >>> 16;
- var a0 = this.getBits(i) & 0xFFFF;
-
- var b1 = other.getBits(i) >>> 16;
- var b0 = other.getBits(i) & 0xFFFF;
-
- var c0 = carry + a0 + b0;
- var c1 = (c0 >>> 16) + a1 + b1;
- carry = c1 >>> 16;
- c0 &= 0xFFFF;
- c1 &= 0xFFFF;
- arr[i] = (c1 << 16) | c0;
- }
- return goog.math.Integer.fromBits(arr);
-};
-
-
-/**
- * Returns the difference of this and the given Integer.
- * @param {goog.math.Integer} other The Integer to subtract from this.
- * @return {!goog.math.Integer} The Integer result.
- */
-goog.math.Integer.prototype.subtract = function(other) {
- return this.add(other.negate());
-};
-
-
-/**
- * Returns the product of this and the given Integer.
- * @param {goog.math.Integer} other The Integer to multiply against this.
- * @return {!goog.math.Integer} The product of this and the other.
- */
-goog.math.Integer.prototype.multiply = function(other) {
- if (this.isZero()) {
- return goog.math.Integer.ZERO;
- } else if (other.isZero()) {
- return goog.math.Integer.ZERO;
- }
-
- if (this.isNegative()) {
- if (other.isNegative()) {
- return this.negate().multiply(other.negate());
- } else {
- return this.negate().multiply(other).negate();
- }
- } else if (other.isNegative()) {
- return this.multiply(other.negate()).negate();
- }
-
- // If both numbers are small, use float multiplication
- if (this.lessThan(goog.math.Integer.TWO_PWR_24_) &&
- other.lessThan(goog.math.Integer.TWO_PWR_24_)) {
- return goog.math.Integer.fromNumber(this.toNumber() * other.toNumber());
- }
-
- // Fill in an array of 16-bit products.
- var len = this.bits_.length + other.bits_.length;
- var arr = [];
- for (var i = 0; i < 2 * len; i++) {
- arr[i] = 0;
- }
- for (var i = 0; i < this.bits_.length; i++) {
- for (var j = 0; j < other.bits_.length; j++) {
- var a1 = this.getBits(i) >>> 16;
- var a0 = this.getBits(i) & 0xFFFF;
-
- var b1 = other.getBits(j) >>> 16;
- var b0 = other.getBits(j) & 0xFFFF;
-
- arr[2 * i + 2 * j] += a0 * b0;
- goog.math.Integer.carry16_(arr, 2 * i + 2 * j);
- arr[2 * i + 2 * j + 1] += a1 * b0;
- goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1);
- arr[2 * i + 2 * j + 1] += a0 * b1;
- goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1);
- arr[2 * i + 2 * j + 2] += a1 * b1;
- goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 2);
- }
- }
-
- // Combine the 16-bit values into 32-bit values.
- for (var i = 0; i < len; i++) {
- arr[i] = (arr[2 * i + 1] << 16) | arr[2 * i];
- }
- for (var i = len; i < 2 * len; i++) {
- arr[i] = 0;
- }
- return new goog.math.Integer(arr, 0);
-};
-
-
-/**
- * Carries any overflow from the given index into later entries.
- * @param {Array<number>} bits Array of 16-bit values in little-endian order.
- * @param {number} index The index in question.
- * @private
- */
-goog.math.Integer.carry16_ = function(bits, index) {
- while ((bits[index] & 0xFFFF) != bits[index]) {
- bits[index + 1] += bits[index] >>> 16;
- bits[index] &= 0xFFFF;
- index++;
- }
-};
-
-
-/**
- * Returns "this" Integer divided by the given one. Both "this" and the given
- * Integer MUST be positive.
- *
- * This method is only needed for very large numbers (>10^308),
- * for which the original division algorithm gets into an infinite
- * loop (see https://github.com/google/closure-library/issues/500).
- *
- * The algorithm has some possible performance enhancements (or
- * could be rewritten entirely), it's just an initial solution for
- * the issue linked above.
- *
- * @param {!goog.math.Integer} other The Integer to divide "this" by.
- * @return {!goog.math.Integer} "this" value divided by the given one.
- * @private
- */
-goog.math.Integer.prototype.slowDivide_ = function(other) {
- if (this.isNegative() || other.isNegative()) {
- throw Error('slowDivide_ only works with positive integers.');
- }
-
- var twoPower = goog.math.Integer.ONE;
- var multiple = other;
-
- // First we have to figure out what the highest bit of the result
- // is, so we increase "twoPower" and "multiple" until "multiple"
- // exceeds "this".
- while (multiple.lessThanOrEqual(this)) {
- twoPower = twoPower.shiftLeft(1);
- multiple = multiple.shiftLeft(1);
- }
-
- // Rewind by one power of two, giving us the highest bit of the
- // result.
- var res = twoPower.shiftRight(1);
- var total = multiple.shiftRight(1);
-
- // Now we starting decreasing "multiple" and "twoPower" to find the
- // rest of the bits of the result.
- var total2;
- multiple = multiple.shiftRight(2);
- twoPower = twoPower.shiftRight(2);
- while (!multiple.isZero()) {
- // whenever we can add "multiple" to the total and not exceed
- // "this", that means we've found a 1 bit. Else we've found a 0
- // and don't need to add to the result.
- total2 = total.add(multiple);
- if (total2.lessThanOrEqual(this)) {
- res = res.add(twoPower);
- total = total2;
- }
- multiple = multiple.shiftRight(1);
- twoPower = twoPower.shiftRight(1);
- }
- return res;
-};
-
-
-/**
- * Returns this Integer divided by the given one.
- * @param {!goog.math.Integer} other The Integer to divide this by.
- * @return {!goog.math.Integer} This value divided by the given one.
- */
-goog.math.Integer.prototype.divide = function(other) {
- if (other.isZero()) {
- throw Error('division by zero');
- } else if (this.isZero()) {
- return goog.math.Integer.ZERO;
- }
-
- if (this.isNegative()) {
- if (other.isNegative()) {
- return this.negate().divide(other.negate());
- } else {
- return this.negate().divide(other).negate();
- }
- } else if (other.isNegative()) {
- return this.divide(other.negate()).negate();
- }
-
- // Have to degrade to slowDivide for Very Large Numbers, because
- // they're out of range for the floating-point approximation
- // technique used below.
- if (this.bits_.length > 30) {
- return this.slowDivide_(other);
- }
-
- // Repeat the following until the remainder is less than other: find a
- // floating-point that approximates remainder / other *from below*, add this
- // into the result, and subtract it from the remainder. It is critical that
- // the approximate value is less than or equal to the real value so that the
- // remainder never becomes negative.
- var res = goog.math.Integer.ZERO;
- var rem = this;
- while (rem.greaterThanOrEqual(other)) {
- // Approximate the result of division. This may be a little greater or
- // smaller than the actual value.
- var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
-
- // We will tweak the approximate result by changing it in the 48-th digit or
- // the smallest non-fractional digit, whichever is larger.
- var log2 = Math.ceil(Math.log(approx) / Math.LN2);
- var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
-
- // Decrease the approximation until it is smaller than the remainder. Note
- // that if it is too large, the product overflows and is negative.
- var approxRes = goog.math.Integer.fromNumber(approx);
- var approxRem = approxRes.multiply(other);
- while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
- approx -= delta;
- approxRes = goog.math.Integer.fromNumber(approx);
- approxRem = approxRes.multiply(other);
- }
-
- // We know the answer can't be zero... and actually, zero would cause
- // infinite recursion since we would make no progress.
- if (approxRes.isZero()) {
- approxRes = goog.math.Integer.ONE;
- }
-
- res = res.add(approxRes);
- rem = rem.subtract(approxRem);
- }
- return res;
-};
-
-
-/**
- * Returns this Integer modulo the given one.
- * @param {!goog.math.Integer} other The Integer by which to mod.
- * @return {!goog.math.Integer} This value modulo the given one.
- */
-goog.math.Integer.prototype.modulo = function(other) {
- return this.subtract(this.divide(other).multiply(other));
-};
-
-
-/** @return {!goog.math.Integer} The bitwise-NOT of this value. */
-goog.math.Integer.prototype.not = function() {
- var len = this.bits_.length;
- var arr = [];
- for (var i = 0; i < len; i++) {
- arr[i] = ~this.bits_[i];
- }
- return new goog.math.Integer(arr, ~this.sign_);
-};
-
-
-/**
- * Returns the bitwise-AND of this Integer and the given one.
- * @param {goog.math.Integer} other The Integer to AND with this.
- * @return {!goog.math.Integer} The bitwise-AND of this and the other.
- */
-goog.math.Integer.prototype.and = function(other) {
- var len = Math.max(this.bits_.length, other.bits_.length);
- var arr = [];
- for (var i = 0; i < len; i++) {
- arr[i] = this.getBits(i) & other.getBits(i);
- }
- return new goog.math.Integer(arr, this.sign_ & other.sign_);
-};
-
-
-/**
- * Returns the bitwise-OR of this Integer and the given one.
- * @param {goog.math.Integer} other The Integer to OR with this.
- * @return {!goog.math.Integer} The bitwise-OR of this and the other.
- */
-goog.math.Integer.prototype.or = function(other) {
- var len = Math.max(this.bits_.length, other.bits_.length);
- var arr = [];
- for (var i = 0; i < len; i++) {
- arr[i] = this.getBits(i) | other.getBits(i);
- }
- return new goog.math.Integer(arr, this.sign_ | other.sign_);
-};
-
-
-/**
- * Returns the bitwise-XOR of this Integer and the given one.
- * @param {goog.math.Integer} other The Integer to XOR with this.
- * @return {!goog.math.Integer} The bitwise-XOR of this and the other.
- */
-goog.math.Integer.prototype.xor = function(other) {
- var len = Math.max(this.bits_.length, other.bits_.length);
- var arr = [];
- for (var i = 0; i < len; i++) {
- arr[i] = this.getBits(i) ^ other.getBits(i);
- }
- return new goog.math.Integer(arr, this.sign_ ^ other.sign_);
-};
-
-
-/**
- * Returns this value with bits shifted to the left by the given amount.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Integer} This shifted to the left by the given amount.
- */
-goog.math.Integer.prototype.shiftLeft = function(numBits) {
- var arr_delta = numBits >> 5;
- var bit_delta = numBits % 32;
- var len = this.bits_.length + arr_delta + (bit_delta > 0 ? 1 : 0);
- var arr = [];
- for (var i = 0; i < len; i++) {
- if (bit_delta > 0) {
- arr[i] = (this.getBits(i - arr_delta) << bit_delta) |
- (this.getBits(i - arr_delta - 1) >>> (32 - bit_delta));
- } else {
- arr[i] = this.getBits(i - arr_delta);
- }
- }
- return new goog.math.Integer(arr, this.sign_);
-};
-
-
-/**
- * Returns this value with bits shifted to the right by the given amount.
- * @param {number} numBits The number of bits by which to shift.
- * @return {!goog.math.Integer} This shifted to the right by the given amount.
- */
-goog.math.Integer.prototype.shiftRight = function(numBits) {
- var arr_delta = numBits >> 5;
- var bit_delta = numBits % 32;
- var len = this.bits_.length - arr_delta;
- var arr = [];
- for (var i = 0; i < len; i++) {
- if (bit_delta > 0) {
- arr[i] = (this.getBits(i + arr_delta) >>> bit_delta) |
- (this.getBits(i + arr_delta + 1) << (32 - bit_delta));
- } else {
- arr[i] = this.getBits(i + arr_delta);
- }
- }
- return new goog.math.Integer(arr, this.sign_);
-};