diff options
Diffstat (limited to 'static/src/assets/viz/2/goog/math/math.js')
-rw-r--r-- | static/src/assets/viz/2/goog/math/math.js | 448 |
1 files changed, 0 insertions, 448 deletions
diff --git a/static/src/assets/viz/2/goog/math/math.js b/static/src/assets/viz/2/goog/math/math.js deleted file mode 100644 index b8dbfb0..0000000 --- a/static/src/assets/viz/2/goog/math/math.js +++ /dev/null @@ -1,448 +0,0 @@ -// Copyright 2006 The Closure Library Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS-IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -/** - * @fileoverview Additional mathematical functions. - */ - -goog.provide('goog.math'); - -goog.require('goog.array'); -goog.require('goog.asserts'); - - -/** - * Returns a random integer greater than or equal to 0 and less than {@code a}. - * @param {number} a The upper bound for the random integer (exclusive). - * @return {number} A random integer N such that 0 <= N < a. - */ -goog.math.randomInt = function(a) { - return Math.floor(Math.random() * a); -}; - - -/** - * Returns a random number greater than or equal to {@code a} and less than - * {@code b}. - * @param {number} a The lower bound for the random number (inclusive). - * @param {number} b The upper bound for the random number (exclusive). - * @return {number} A random number N such that a <= N < b. - */ -goog.math.uniformRandom = function(a, b) { - return a + Math.random() * (b - a); -}; - - -/** - * Takes a number and clamps it to within the provided bounds. - * @param {number} value The input number. - * @param {number} min The minimum value to return. - * @param {number} max The maximum value to return. - * @return {number} The input number if it is within bounds, or the nearest - * number within the bounds. - */ -goog.math.clamp = function(value, min, max) { - return Math.min(Math.max(value, min), max); -}; - - -/** - * The % operator in JavaScript returns the remainder of a / b, but differs from - * some other languages in that the result will have the same sign as the - * dividend. For example, -1 % 8 == -1, whereas in some other languages - * (such as Python) the result would be 7. This function emulates the more - * correct modulo behavior, which is useful for certain applications such as - * calculating an offset index in a circular list. - * - * @param {number} a The dividend. - * @param {number} b The divisor. - * @return {number} a % b where the result is between 0 and b (either 0 <= x < b - * or b < x <= 0, depending on the sign of b). - */ -goog.math.modulo = function(a, b) { - var r = a % b; - // If r and b differ in sign, add b to wrap the result to the correct sign. - return (r * b < 0) ? r + b : r; -}; - - -/** - * Performs linear interpolation between values a and b. Returns the value - * between a and b proportional to x (when x is between 0 and 1. When x is - * outside this range, the return value is a linear extrapolation). - * @param {number} a A number. - * @param {number} b A number. - * @param {number} x The proportion between a and b. - * @return {number} The interpolated value between a and b. - */ -goog.math.lerp = function(a, b, x) { - return a + x * (b - a); -}; - - -/** - * Tests whether the two values are equal to each other, within a certain - * tolerance to adjust for floating point errors. - * @param {number} a A number. - * @param {number} b A number. - * @param {number=} opt_tolerance Optional tolerance range. Defaults - * to 0.000001. If specified, should be greater than 0. - * @return {boolean} Whether {@code a} and {@code b} are nearly equal. - */ -goog.math.nearlyEquals = function(a, b, opt_tolerance) { - return Math.abs(a - b) <= (opt_tolerance || 0.000001); -}; - - -// TODO(user): Rename to normalizeAngle, retaining old name as deprecated -// alias. -/** - * Normalizes an angle to be in range [0-360). Angles outside this range will - * be normalized to be the equivalent angle with that range. - * @param {number} angle Angle in degrees. - * @return {number} Standardized angle. - */ -goog.math.standardAngle = function(angle) { - return goog.math.modulo(angle, 360); -}; - - -/** - * Normalizes an angle to be in range [0-2*PI). Angles outside this range will - * be normalized to be the equivalent angle with that range. - * @param {number} angle Angle in radians. - * @return {number} Standardized angle. - */ -goog.math.standardAngleInRadians = function(angle) { - return goog.math.modulo(angle, 2 * Math.PI); -}; - - -/** - * Converts degrees to radians. - * @param {number} angleDegrees Angle in degrees. - * @return {number} Angle in radians. - */ -goog.math.toRadians = function(angleDegrees) { - return angleDegrees * Math.PI / 180; -}; - - -/** - * Converts radians to degrees. - * @param {number} angleRadians Angle in radians. - * @return {number} Angle in degrees. - */ -goog.math.toDegrees = function(angleRadians) { - return angleRadians * 180 / Math.PI; -}; - - -/** - * For a given angle and radius, finds the X portion of the offset. - * @param {number} degrees Angle in degrees (zero points in +X direction). - * @param {number} radius Radius. - * @return {number} The x-distance for the angle and radius. - */ -goog.math.angleDx = function(degrees, radius) { - return radius * Math.cos(goog.math.toRadians(degrees)); -}; - - -/** - * For a given angle and radius, finds the Y portion of the offset. - * @param {number} degrees Angle in degrees (zero points in +X direction). - * @param {number} radius Radius. - * @return {number} The y-distance for the angle and radius. - */ -goog.math.angleDy = function(degrees, radius) { - return radius * Math.sin(goog.math.toRadians(degrees)); -}; - - -/** - * Computes the angle between two points (x1,y1) and (x2,y2). - * Angle zero points in the +X direction, 90 degrees points in the +Y - * direction (down) and from there we grow clockwise towards 360 degrees. - * @param {number} x1 x of first point. - * @param {number} y1 y of first point. - * @param {number} x2 x of second point. - * @param {number} y2 y of second point. - * @return {number} Standardized angle in degrees of the vector from - * x1,y1 to x2,y2. - */ -goog.math.angle = function(x1, y1, x2, y2) { - return goog.math.standardAngle( - goog.math.toDegrees(Math.atan2(y2 - y1, x2 - x1))); -}; - - -/** - * Computes the difference between startAngle and endAngle (angles in degrees). - * @param {number} startAngle Start angle in degrees. - * @param {number} endAngle End angle in degrees. - * @return {number} The number of degrees that when added to - * startAngle will result in endAngle. Positive numbers mean that the - * direction is clockwise. Negative numbers indicate a counter-clockwise - * direction. - * The shortest route (clockwise vs counter-clockwise) between the angles - * is used. - * When the difference is 180 degrees, the function returns 180 (not -180) - * angleDifference(30, 40) is 10, and angleDifference(40, 30) is -10. - * angleDifference(350, 10) is 20, and angleDifference(10, 350) is -20. - */ -goog.math.angleDifference = function(startAngle, endAngle) { - var d = - goog.math.standardAngle(endAngle) - goog.math.standardAngle(startAngle); - if (d > 180) { - d = d - 360; - } else if (d <= -180) { - d = 360 + d; - } - return d; -}; - - -/** - * Returns the sign of a number as per the "sign" or "signum" function. - * @param {number} x The number to take the sign of. - * @return {number} -1 when negative, 1 when positive, 0 when 0. Preserves - * signed zeros and NaN. - */ -goog.math.sign = function(x) { - if (x > 0) { - return 1; - } - if (x < 0) { - return -1; - } - return x; // Preserves signed zeros and NaN. -}; - - -/** - * JavaScript implementation of Longest Common Subsequence problem. - * http://en.wikipedia.org/wiki/Longest_common_subsequence - * - * Returns the longest possible array that is subarray of both of given arrays. - * - * @param {IArrayLike<S>} array1 First array of objects. - * @param {IArrayLike<T>} array2 Second array of objects. - * @param {Function=} opt_compareFn Function that acts as a custom comparator - * for the array ojects. Function should return true if objects are equal, - * otherwise false. - * @param {Function=} opt_collectorFn Function used to decide what to return - * as a result subsequence. It accepts 2 arguments: index of common element - * in the first array and index in the second. The default function returns - * element from the first array. - * @return {!Array<S|T>} A list of objects that are common to both arrays - * such that there is no common subsequence with size greater than the - * length of the list. - * @template S,T - */ -goog.math.longestCommonSubsequence = function( - array1, array2, opt_compareFn, opt_collectorFn) { - - var compare = opt_compareFn || function(a, b) { return a == b; }; - - var collect = opt_collectorFn || function(i1, i2) { return array1[i1]; }; - - var length1 = array1.length; - var length2 = array2.length; - - var arr = []; - for (var i = 0; i < length1 + 1; i++) { - arr[i] = []; - arr[i][0] = 0; - } - - for (var j = 0; j < length2 + 1; j++) { - arr[0][j] = 0; - } - - for (i = 1; i <= length1; i++) { - for (j = 1; j <= length2; j++) { - if (compare(array1[i - 1], array2[j - 1])) { - arr[i][j] = arr[i - 1][j - 1] + 1; - } else { - arr[i][j] = Math.max(arr[i - 1][j], arr[i][j - 1]); - } - } - } - - // Backtracking - var result = []; - var i = length1, j = length2; - while (i > 0 && j > 0) { - if (compare(array1[i - 1], array2[j - 1])) { - result.unshift(collect(i - 1, j - 1)); - i--; - j--; - } else { - if (arr[i - 1][j] > arr[i][j - 1]) { - i--; - } else { - j--; - } - } - } - - return result; -}; - - -/** - * Returns the sum of the arguments. - * @param {...number} var_args Numbers to add. - * @return {number} The sum of the arguments (0 if no arguments were provided, - * {@code NaN} if any of the arguments is not a valid number). - */ -goog.math.sum = function(var_args) { - return /** @type {number} */ ( - goog.array.reduce( - arguments, function(sum, value) { return sum + value; }, 0)); -}; - - -/** - * Returns the arithmetic mean of the arguments. - * @param {...number} var_args Numbers to average. - * @return {number} The average of the arguments ({@code NaN} if no arguments - * were provided or any of the arguments is not a valid number). - */ -goog.math.average = function(var_args) { - return goog.math.sum.apply(null, arguments) / arguments.length; -}; - - -/** - * Returns the unbiased sample variance of the arguments. For a definition, - * see e.g. http://en.wikipedia.org/wiki/Variance - * @param {...number} var_args Number samples to analyze. - * @return {number} The unbiased sample variance of the arguments (0 if fewer - * than two samples were provided, or {@code NaN} if any of the samples is - * not a valid number). - */ -goog.math.sampleVariance = function(var_args) { - var sampleSize = arguments.length; - if (sampleSize < 2) { - return 0; - } - - var mean = goog.math.average.apply(null, arguments); - var variance = - goog.math.sum.apply(null, goog.array.map(arguments, function(val) { - return Math.pow(val - mean, 2); - })) / (sampleSize - 1); - - return variance; -}; - - -/** - * Returns the sample standard deviation of the arguments. For a definition of - * sample standard deviation, see e.g. - * http://en.wikipedia.org/wiki/Standard_deviation - * @param {...number} var_args Number samples to analyze. - * @return {number} The sample standard deviation of the arguments (0 if fewer - * than two samples were provided, or {@code NaN} if any of the samples is - * not a valid number). - */ -goog.math.standardDeviation = function(var_args) { - return Math.sqrt(goog.math.sampleVariance.apply(null, arguments)); -}; - - -/** - * Returns whether the supplied number represents an integer, i.e. that is has - * no fractional component. No range-checking is performed on the number. - * @param {number} num The number to test. - * @return {boolean} Whether {@code num} is an integer. - */ -goog.math.isInt = function(num) { - return isFinite(num) && num % 1 == 0; -}; - - -/** - * Returns whether the supplied number is finite and not NaN. - * @param {number} num The number to test. - * @return {boolean} Whether {@code num} is a finite number. - * @deprecated Use {@link isFinite} instead. - */ -goog.math.isFiniteNumber = function(num) { - return isFinite(num); -}; - - -/** - * @param {number} num The number to test. - * @return {boolean} Whether it is negative zero. - */ -goog.math.isNegativeZero = function(num) { - return num == 0 && 1 / num < 0; -}; - - -/** - * Returns the precise value of floor(log10(num)). - * Simpler implementations didn't work because of floating point rounding - * errors. For example - * <ul> - * <li>Math.floor(Math.log(num) / Math.LN10) is off by one for num == 1e+3. - * <li>Math.floor(Math.log(num) * Math.LOG10E) is off by one for num == 1e+15. - * <li>Math.floor(Math.log10(num)) is off by one for num == 1e+15 - 1. - * </ul> - * @param {number} num A floating point number. - * @return {number} Its logarithm to base 10 rounded down to the nearest - * integer if num > 0. -Infinity if num == 0. NaN if num < 0. - */ -goog.math.log10Floor = function(num) { - if (num > 0) { - var x = Math.round(Math.log(num) * Math.LOG10E); - return x - (parseFloat('1e' + x) > num ? 1 : 0); - } - return num == 0 ? -Infinity : NaN; -}; - - -/** - * A tweaked variant of {@code Math.floor} which tolerates if the passed number - * is infinitesimally smaller than the closest integer. It often happens with - * the results of floating point calculations because of the finite precision - * of the intermediate results. For example {@code Math.floor(Math.log(1000) / - * Math.LN10) == 2}, not 3 as one would expect. - * @param {number} num A number. - * @param {number=} opt_epsilon An infinitesimally small positive number, the - * rounding error to tolerate. - * @return {number} The largest integer less than or equal to {@code num}. - */ -goog.math.safeFloor = function(num, opt_epsilon) { - goog.asserts.assert(!goog.isDef(opt_epsilon) || opt_epsilon > 0); - return Math.floor(num + (opt_epsilon || 2e-15)); -}; - - -/** - * A tweaked variant of {@code Math.ceil}. See {@code goog.math.safeFloor} for - * details. - * @param {number} num A number. - * @param {number=} opt_epsilon An infinitesimally small positive number, the - * rounding error to tolerate. - * @return {number} The smallest integer greater than or equal to {@code num}. - */ -goog.math.safeCeil = function(num, opt_epsilon) { - goog.asserts.assert(!goog.isDef(opt_epsilon) || opt_epsilon > 0); - return Math.ceil(num - (opt_epsilon || 2e-15)); -}; |