summaryrefslogtreecommitdiff
path: root/assets/viz/2/goog/math/integer.js
blob: 6907546e18e51ec2211e879f26a7ca9a5c0e2c40 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
// Copyright 2009 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/**
 * @fileoverview Defines an Integer class for representing (potentially)
 * infinite length two's-complement integer values.
 *
 * For the specific case of 64-bit integers, use goog.math.Long, which is more
 * efficient.
 *
 */

goog.provide('goog.math.Integer');



/**
 * Constructs a two's-complement integer an array containing bits of the
 * integer in 32-bit (signed) pieces, given in little-endian order (i.e.,
 * lowest-order bits in the first piece), and the sign of -1 or 0.
 *
 * See the from* functions below for other convenient ways of constructing
 * Integers.
 *
 * The internal representation of an integer is an array of 32-bit signed
 * pieces, along with a sign (0 or -1) that indicates the contents of all the
 * other 32-bit pieces out to infinity.  We use 32-bit pieces because these are
 * the size of integers on which Javascript performs bit-operations.  For
 * operations like addition and multiplication, we split each number into 16-bit
 * pieces, which can easily be multiplied within Javascript's floating-point
 * representation without overflow or change in sign.
 *
 * @struct
 * @constructor
 * @param {Array<number>} bits Array containing the bits of the number.
 * @param {number} sign The sign of the number: -1 for negative and 0 positive.
 * @final
 */
goog.math.Integer = function(bits, sign) {
  /**
   * @type {!Array<number>}
   * @private
   */
  this.bits_ = [];

  /**
   * @type {number}
   * @private
   */
  this.sign_ = sign;

  // Copy the 32-bit signed integer values passed in.  We prune out those at the
  // top that equal the sign since they are redundant.
  var top = true;
  for (var i = bits.length - 1; i >= 0; i--) {
    var val = bits[i] | 0;
    if (!top || val != sign) {
      this.bits_[i] = val;
      top = false;
    }
  }
};


// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
// from* methods on which they depend.


/**
 * A cache of the Integer representations of small integer values.
 * @type {!Object}
 * @private
 */
goog.math.Integer.IntCache_ = {};


/**
 * Returns an Integer representing the given (32-bit) integer value.
 * @param {number} value A 32-bit integer value.
 * @return {!goog.math.Integer} The corresponding Integer value.
 */
goog.math.Integer.fromInt = function(value) {
  if (-128 <= value && value < 128) {
    var cachedObj = goog.math.Integer.IntCache_[value];
    if (cachedObj) {
      return cachedObj;
    }
  }

  var obj = new goog.math.Integer([value | 0], value < 0 ? -1 : 0);
  if (-128 <= value && value < 128) {
    goog.math.Integer.IntCache_[value] = obj;
  }
  return obj;
};


/**
 * Returns an Integer representing the given value, provided that it is a finite
 * number.  Otherwise, zero is returned.
 * @param {number} value The value in question.
 * @return {!goog.math.Integer} The corresponding Integer value.
 */
goog.math.Integer.fromNumber = function(value) {
  if (isNaN(value) || !isFinite(value)) {
    return goog.math.Integer.ZERO;
  } else if (value < 0) {
    return goog.math.Integer.fromNumber(-value).negate();
  } else {
    var bits = [];
    var pow = 1;
    for (var i = 0; value >= pow; i++) {
      bits[i] = (value / pow) | 0;
      pow *= goog.math.Integer.TWO_PWR_32_DBL_;
    }
    return new goog.math.Integer(bits, 0);
  }
};


/**
 * Returns a Integer representing the value that comes by concatenating the
 * given entries, each is assumed to be 32 signed bits, given in little-endian
 * order (lowest order bits in the lowest index), and sign-extending the highest
 * order 32-bit value.
 * @param {Array<number>} bits The bits of the number, in 32-bit signed pieces,
 *     in little-endian order.
 * @return {!goog.math.Integer} The corresponding Integer value.
 */
goog.math.Integer.fromBits = function(bits) {
  var high = bits[bits.length - 1];
  return new goog.math.Integer(bits, high & (1 << 31) ? -1 : 0);
};


/**
 * Returns an Integer representation of the given string, written using the
 * given radix.
 * @param {string} str The textual representation of the Integer.
 * @param {number=} opt_radix The radix in which the text is written.
 * @return {!goog.math.Integer} The corresponding Integer value.
 */
goog.math.Integer.fromString = function(str, opt_radix) {
  if (str.length == 0) {
    throw Error('number format error: empty string');
  }

  var radix = opt_radix || 10;
  if (radix < 2 || 36 < radix) {
    throw Error('radix out of range: ' + radix);
  }

  if (str.charAt(0) == '-') {
    return goog.math.Integer.fromString(str.substring(1), radix).negate();
  } else if (str.indexOf('-') >= 0) {
    throw Error('number format error: interior "-" character');
  }

  // Do several (8) digits each time through the loop, so as to
  // minimize the calls to the very expensive emulated div.
  var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 8));

  var result = goog.math.Integer.ZERO;
  for (var i = 0; i < str.length; i += 8) {
    var size = Math.min(8, str.length - i);
    var value = parseInt(str.substring(i, i + size), radix);
    if (size < 8) {
      var power = goog.math.Integer.fromNumber(Math.pow(radix, size));
      result = result.multiply(power).add(goog.math.Integer.fromNumber(value));
    } else {
      result = result.multiply(radixToPower);
      result = result.add(goog.math.Integer.fromNumber(value));
    }
  }
  return result;
};


/**
 * A number used repeatedly in calculations.  This must appear before the first
 * call to the from* functions below.
 * @type {number}
 * @private
 */
goog.math.Integer.TWO_PWR_32_DBL_ = (1 << 16) * (1 << 16);


/** @type {!goog.math.Integer} */
goog.math.Integer.ZERO = goog.math.Integer.fromInt(0);


/** @type {!goog.math.Integer} */
goog.math.Integer.ONE = goog.math.Integer.fromInt(1);


/**
 * @type {!goog.math.Integer}
 * @private
 */
goog.math.Integer.TWO_PWR_24_ = goog.math.Integer.fromInt(1 << 24);


/**
 * Returns the value, assuming it is a 32-bit integer.
 * @return {number} The corresponding int value.
 */
goog.math.Integer.prototype.toInt = function() {
  return this.bits_.length > 0 ? this.bits_[0] : this.sign_;
};


/** @return {number} The closest floating-point representation to this value. */
goog.math.Integer.prototype.toNumber = function() {
  if (this.isNegative()) {
    return -this.negate().toNumber();
  } else {
    var val = 0;
    var pow = 1;
    for (var i = 0; i < this.bits_.length; i++) {
      val += this.getBitsUnsigned(i) * pow;
      pow *= goog.math.Integer.TWO_PWR_32_DBL_;
    }
    return val;
  }
};


/**
 * @param {number=} opt_radix The radix in which the text should be written.
 * @return {string} The textual representation of this value.
 * @override
 */
goog.math.Integer.prototype.toString = function(opt_radix) {
  var radix = opt_radix || 10;
  if (radix < 2 || 36 < radix) {
    throw Error('radix out of range: ' + radix);
  }

  if (this.isZero()) {
    return '0';
  } else if (this.isNegative()) {
    return '-' + this.negate().toString(radix);
  }

  // Do several (6) digits each time through the loop, so as to
  // minimize the calls to the very expensive emulated div.
  var radixToPower = goog.math.Integer.fromNumber(Math.pow(radix, 6));

  var rem = this;
  var result = '';
  while (true) {
    var remDiv = rem.divide(radixToPower);
    // The right shifting fixes negative values in the case when
    // intval >= 2^31; for more details see
    // https://github.com/google/closure-library/pull/498
    var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt() >>> 0;
    var digits = intval.toString(radix);

    rem = remDiv;
    if (rem.isZero()) {
      return digits + result;
    } else {
      while (digits.length < 6) {
        digits = '0' + digits;
      }
      result = '' + digits + result;
    }
  }
};


/**
 * Returns the index-th 32-bit (signed) piece of the Integer according to
 * little-endian order (i.e., index 0 contains the smallest bits).
 * @param {number} index The index in question.
 * @return {number} The requested 32-bits as a signed number.
 */
goog.math.Integer.prototype.getBits = function(index) {
  if (index < 0) {
    return 0;  // Allowing this simplifies bit shifting operations below...
  } else if (index < this.bits_.length) {
    return this.bits_[index];
  } else {
    return this.sign_;
  }
};


/**
 * Returns the index-th 32-bit piece as an unsigned number.
 * @param {number} index The index in question.
 * @return {number} The requested 32-bits as an unsigned number.
 */
goog.math.Integer.prototype.getBitsUnsigned = function(index) {
  var val = this.getBits(index);
  return val >= 0 ? val : goog.math.Integer.TWO_PWR_32_DBL_ + val;
};


/** @return {number} The sign bit of this number, -1 or 0. */
goog.math.Integer.prototype.getSign = function() {
  return this.sign_;
};


/** @return {boolean} Whether this value is zero. */
goog.math.Integer.prototype.isZero = function() {
  if (this.sign_ != 0) {
    return false;
  }
  for (var i = 0; i < this.bits_.length; i++) {
    if (this.bits_[i] != 0) {
      return false;
    }
  }
  return true;
};


/** @return {boolean} Whether this value is negative. */
goog.math.Integer.prototype.isNegative = function() {
  return this.sign_ == -1;
};


/** @return {boolean} Whether this value is odd. */
goog.math.Integer.prototype.isOdd = function() {
  return (this.bits_.length == 0) && (this.sign_ == -1) ||
      (this.bits_.length > 0) && ((this.bits_[0] & 1) != 0);
};


/**
 * @param {goog.math.Integer} other Integer to compare against.
 * @return {boolean} Whether this Integer equals the other.
 */
goog.math.Integer.prototype.equals = function(other) {
  if (this.sign_ != other.sign_) {
    return false;
  }
  var len = Math.max(this.bits_.length, other.bits_.length);
  for (var i = 0; i < len; i++) {
    if (this.getBits(i) != other.getBits(i)) {
      return false;
    }
  }
  return true;
};


/**
 * @param {goog.math.Integer} other Integer to compare against.
 * @return {boolean} Whether this Integer does not equal the other.
 */
goog.math.Integer.prototype.notEquals = function(other) {
  return !this.equals(other);
};


/**
 * @param {goog.math.Integer} other Integer to compare against.
 * @return {boolean} Whether this Integer is greater than the other.
 */
goog.math.Integer.prototype.greaterThan = function(other) {
  return this.compare(other) > 0;
};


/**
 * @param {goog.math.Integer} other Integer to compare against.
 * @return {boolean} Whether this Integer is greater than or equal to the other.
 */
goog.math.Integer.prototype.greaterThanOrEqual = function(other) {
  return this.compare(other) >= 0;
};


/**
 * @param {goog.math.Integer} other Integer to compare against.
 * @return {boolean} Whether this Integer is less than the other.
 */
goog.math.Integer.prototype.lessThan = function(other) {
  return this.compare(other) < 0;
};


/**
 * @param {goog.math.Integer} other Integer to compare against.
 * @return {boolean} Whether this Integer is less than or equal to the other.
 */
goog.math.Integer.prototype.lessThanOrEqual = function(other) {
  return this.compare(other) <= 0;
};


/**
 * Compares this Integer with the given one.
 * @param {goog.math.Integer} other Integer to compare against.
 * @return {number} 0 if they are the same, 1 if the this is greater, and -1
 *     if the given one is greater.
 */
goog.math.Integer.prototype.compare = function(other) {
  var diff = this.subtract(other);
  if (diff.isNegative()) {
    return -1;
  } else if (diff.isZero()) {
    return 0;
  } else {
    return +1;
  }
};


/**
 * Returns an integer with only the first numBits bits of this value, sign
 * extended from the final bit.
 * @param {number} numBits The number of bits by which to shift.
 * @return {!goog.math.Integer} The shorted integer value.
 */
goog.math.Integer.prototype.shorten = function(numBits) {
  var arr_index = (numBits - 1) >> 5;
  var bit_index = (numBits - 1) % 32;
  var bits = [];
  for (var i = 0; i < arr_index; i++) {
    bits[i] = this.getBits(i);
  }
  var sigBits = bit_index == 31 ? 0xFFFFFFFF : (1 << (bit_index + 1)) - 1;
  var val = this.getBits(arr_index) & sigBits;
  if (val & (1 << bit_index)) {
    val |= 0xFFFFFFFF - sigBits;
    bits[arr_index] = val;
    return new goog.math.Integer(bits, -1);
  } else {
    bits[arr_index] = val;
    return new goog.math.Integer(bits, 0);
  }
};


/** @return {!goog.math.Integer} The negation of this value. */
goog.math.Integer.prototype.negate = function() {
  return this.not().add(goog.math.Integer.ONE);
};


/**
 * Returns the sum of this and the given Integer.
 * @param {goog.math.Integer} other The Integer to add to this.
 * @return {!goog.math.Integer} The Integer result.
 */
goog.math.Integer.prototype.add = function(other) {
  var len = Math.max(this.bits_.length, other.bits_.length);
  var arr = [];
  var carry = 0;

  for (var i = 0; i <= len; i++) {
    var a1 = this.getBits(i) >>> 16;
    var a0 = this.getBits(i) & 0xFFFF;

    var b1 = other.getBits(i) >>> 16;
    var b0 = other.getBits(i) & 0xFFFF;

    var c0 = carry + a0 + b0;
    var c1 = (c0 >>> 16) + a1 + b1;
    carry = c1 >>> 16;
    c0 &= 0xFFFF;
    c1 &= 0xFFFF;
    arr[i] = (c1 << 16) | c0;
  }
  return goog.math.Integer.fromBits(arr);
};


/**
 * Returns the difference of this and the given Integer.
 * @param {goog.math.Integer} other The Integer to subtract from this.
 * @return {!goog.math.Integer} The Integer result.
 */
goog.math.Integer.prototype.subtract = function(other) {
  return this.add(other.negate());
};


/**
 * Returns the product of this and the given Integer.
 * @param {goog.math.Integer} other The Integer to multiply against this.
 * @return {!goog.math.Integer} The product of this and the other.
 */
goog.math.Integer.prototype.multiply = function(other) {
  if (this.isZero()) {
    return goog.math.Integer.ZERO;
  } else if (other.isZero()) {
    return goog.math.Integer.ZERO;
  }

  if (this.isNegative()) {
    if (other.isNegative()) {
      return this.negate().multiply(other.negate());
    } else {
      return this.negate().multiply(other).negate();
    }
  } else if (other.isNegative()) {
    return this.multiply(other.negate()).negate();
  }

  // If both numbers are small, use float multiplication
  if (this.lessThan(goog.math.Integer.TWO_PWR_24_) &&
      other.lessThan(goog.math.Integer.TWO_PWR_24_)) {
    return goog.math.Integer.fromNumber(this.toNumber() * other.toNumber());
  }

  // Fill in an array of 16-bit products.
  var len = this.bits_.length + other.bits_.length;
  var arr = [];
  for (var i = 0; i < 2 * len; i++) {
    arr[i] = 0;
  }
  for (var i = 0; i < this.bits_.length; i++) {
    for (var j = 0; j < other.bits_.length; j++) {
      var a1 = this.getBits(i) >>> 16;
      var a0 = this.getBits(i) & 0xFFFF;

      var b1 = other.getBits(j) >>> 16;
      var b0 = other.getBits(j) & 0xFFFF;

      arr[2 * i + 2 * j] += a0 * b0;
      goog.math.Integer.carry16_(arr, 2 * i + 2 * j);
      arr[2 * i + 2 * j + 1] += a1 * b0;
      goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1);
      arr[2 * i + 2 * j + 1] += a0 * b1;
      goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 1);
      arr[2 * i + 2 * j + 2] += a1 * b1;
      goog.math.Integer.carry16_(arr, 2 * i + 2 * j + 2);
    }
  }

  // Combine the 16-bit values into 32-bit values.
  for (var i = 0; i < len; i++) {
    arr[i] = (arr[2 * i + 1] << 16) | arr[2 * i];
  }
  for (var i = len; i < 2 * len; i++) {
    arr[i] = 0;
  }
  return new goog.math.Integer(arr, 0);
};


/**
 * Carries any overflow from the given index into later entries.
 * @param {Array<number>} bits Array of 16-bit values in little-endian order.
 * @param {number} index The index in question.
 * @private
 */
goog.math.Integer.carry16_ = function(bits, index) {
  while ((bits[index] & 0xFFFF) != bits[index]) {
    bits[index + 1] += bits[index] >>> 16;
    bits[index] &= 0xFFFF;
    index++;
  }
};


/**
 * Returns "this" Integer divided by the given one. Both "this" and the given
 * Integer MUST be positive.
 *
 * This method is only needed for very large numbers (>10^308),
 * for which the original division algorithm gets into an infinite
 * loop (see https://github.com/google/closure-library/issues/500).
 *
 * The algorithm has some possible performance enhancements (or
 * could be rewritten entirely), it's just an initial solution for
 * the issue linked above.
 *
 * @param {!goog.math.Integer} other The Integer to divide "this" by.
 * @return {!goog.math.Integer} "this" value divided by the given one.
 * @private
 */
goog.math.Integer.prototype.slowDivide_ = function(other) {
  if (this.isNegative() || other.isNegative()) {
    throw Error('slowDivide_ only works with positive integers.');
  }

  var twoPower = goog.math.Integer.ONE;
  var multiple = other;

  // First we have to figure out what the highest bit of the result
  // is, so we increase "twoPower" and "multiple" until "multiple"
  // exceeds "this".
  while (multiple.lessThanOrEqual(this)) {
    twoPower = twoPower.shiftLeft(1);
    multiple = multiple.shiftLeft(1);
  }

  // Rewind by one power of two, giving us the highest bit of the
  // result.
  var res = twoPower.shiftRight(1);
  var total = multiple.shiftRight(1);

  // Now we starting decreasing "multiple" and "twoPower" to find the
  // rest of the bits of the result.
  var total2;
  multiple = multiple.shiftRight(2);
  twoPower = twoPower.shiftRight(2);
  while (!multiple.isZero()) {
    // whenever we can add "multiple" to the total and not exceed
    // "this", that means we've found a 1 bit. Else we've found a 0
    // and don't need to add to the result.
    total2 = total.add(multiple);
    if (total2.lessThanOrEqual(this)) {
      res = res.add(twoPower);
      total = total2;
    }
    multiple = multiple.shiftRight(1);
    twoPower = twoPower.shiftRight(1);
  }
  return res;
};


/**
 * Returns this Integer divided by the given one.
 * @param {!goog.math.Integer} other The Integer to divide this by.
 * @return {!goog.math.Integer} This value divided by the given one.
 */
goog.math.Integer.prototype.divide = function(other) {
  if (other.isZero()) {
    throw Error('division by zero');
  } else if (this.isZero()) {
    return goog.math.Integer.ZERO;
  }

  if (this.isNegative()) {
    if (other.isNegative()) {
      return this.negate().divide(other.negate());
    } else {
      return this.negate().divide(other).negate();
    }
  } else if (other.isNegative()) {
    return this.divide(other.negate()).negate();
  }

  // Have to degrade to slowDivide for Very Large Numbers, because
  // they're out of range for the floating-point approximation
  // technique used below.
  if (this.bits_.length > 30) {
    return this.slowDivide_(other);
  }

  // Repeat the following until the remainder is less than other:  find a
  // floating-point that approximates remainder / other *from below*, add this
  // into the result, and subtract it from the remainder.  It is critical that
  // the approximate value is less than or equal to the real value so that the
  // remainder never becomes negative.
  var res = goog.math.Integer.ZERO;
  var rem = this;
  while (rem.greaterThanOrEqual(other)) {
    // Approximate the result of division. This may be a little greater or
    // smaller than the actual value.
    var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));

    // We will tweak the approximate result by changing it in the 48-th digit or
    // the smallest non-fractional digit, whichever is larger.
    var log2 = Math.ceil(Math.log(approx) / Math.LN2);
    var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);

    // Decrease the approximation until it is smaller than the remainder.  Note
    // that if it is too large, the product overflows and is negative.
    var approxRes = goog.math.Integer.fromNumber(approx);
    var approxRem = approxRes.multiply(other);
    while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
      approx -= delta;
      approxRes = goog.math.Integer.fromNumber(approx);
      approxRem = approxRes.multiply(other);
    }

    // We know the answer can't be zero... and actually, zero would cause
    // infinite recursion since we would make no progress.
    if (approxRes.isZero()) {
      approxRes = goog.math.Integer.ONE;
    }

    res = res.add(approxRes);
    rem = rem.subtract(approxRem);
  }
  return res;
};


/**
 * Returns this Integer modulo the given one.
 * @param {!goog.math.Integer} other The Integer by which to mod.
 * @return {!goog.math.Integer} This value modulo the given one.
 */
goog.math.Integer.prototype.modulo = function(other) {
  return this.subtract(this.divide(other).multiply(other));
};


/** @return {!goog.math.Integer} The bitwise-NOT of this value. */
goog.math.Integer.prototype.not = function() {
  var len = this.bits_.length;
  var arr = [];
  for (var i = 0; i < len; i++) {
    arr[i] = ~this.bits_[i];
  }
  return new goog.math.Integer(arr, ~this.sign_);
};


/**
 * Returns the bitwise-AND of this Integer and the given one.
 * @param {goog.math.Integer} other The Integer to AND with this.
 * @return {!goog.math.Integer} The bitwise-AND of this and the other.
 */
goog.math.Integer.prototype.and = function(other) {
  var len = Math.max(this.bits_.length, other.bits_.length);
  var arr = [];
  for (var i = 0; i < len; i++) {
    arr[i] = this.getBits(i) & other.getBits(i);
  }
  return new goog.math.Integer(arr, this.sign_ & other.sign_);
};


/**
 * Returns the bitwise-OR of this Integer and the given one.
 * @param {goog.math.Integer} other The Integer to OR with this.
 * @return {!goog.math.Integer} The bitwise-OR of this and the other.
 */
goog.math.Integer.prototype.or = function(other) {
  var len = Math.max(this.bits_.length, other.bits_.length);
  var arr = [];
  for (var i = 0; i < len; i++) {
    arr[i] = this.getBits(i) | other.getBits(i);
  }
  return new goog.math.Integer(arr, this.sign_ | other.sign_);
};


/**
 * Returns the bitwise-XOR of this Integer and the given one.
 * @param {goog.math.Integer} other The Integer to XOR with this.
 * @return {!goog.math.Integer} The bitwise-XOR of this and the other.
 */
goog.math.Integer.prototype.xor = function(other) {
  var len = Math.max(this.bits_.length, other.bits_.length);
  var arr = [];
  for (var i = 0; i < len; i++) {
    arr[i] = this.getBits(i) ^ other.getBits(i);
  }
  return new goog.math.Integer(arr, this.sign_ ^ other.sign_);
};


/**
 * Returns this value with bits shifted to the left by the given amount.
 * @param {number} numBits The number of bits by which to shift.
 * @return {!goog.math.Integer} This shifted to the left by the given amount.
 */
goog.math.Integer.prototype.shiftLeft = function(numBits) {
  var arr_delta = numBits >> 5;
  var bit_delta = numBits % 32;
  var len = this.bits_.length + arr_delta + (bit_delta > 0 ? 1 : 0);
  var arr = [];
  for (var i = 0; i < len; i++) {
    if (bit_delta > 0) {
      arr[i] = (this.getBits(i - arr_delta) << bit_delta) |
          (this.getBits(i - arr_delta - 1) >>> (32 - bit_delta));
    } else {
      arr[i] = this.getBits(i - arr_delta);
    }
  }
  return new goog.math.Integer(arr, this.sign_);
};


/**
 * Returns this value with bits shifted to the right by the given amount.
 * @param {number} numBits The number of bits by which to shift.
 * @return {!goog.math.Integer} This shifted to the right by the given amount.
 */
goog.math.Integer.prototype.shiftRight = function(numBits) {
  var arr_delta = numBits >> 5;
  var bit_delta = numBits % 32;
  var len = this.bits_.length - arr_delta;
  var arr = [];
  for (var i = 0; i < len; i++) {
    if (bit_delta > 0) {
      arr[i] = (this.getBits(i + arr_delta) >>> bit_delta) |
          (this.getBits(i + arr_delta + 1) << (32 - bit_delta));
    } else {
      arr[i] = this.getBits(i + arr_delta);
    }
  }
  return new goog.math.Integer(arr, this.sign_);
};