1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
|
---
title: >-
Visualization 7
description: >-
Feedback Loop.
series: viz
tags: tech art
---
<script type="text/javascript">
function randn(n) {
return Math.floor(Math.random() * n);
}
const w = 100;
const h = 60;
class Canvas {
constructor(canvasDOM) {
this.dom = canvasDOM;
this.ctx = canvasDOM.getContext("2d");
// expand canvas element's width to match parent.
this.dom.width = this.dom.parentElement.offsetWidth;
// rectSize must be an even number or the pixels don't display nicely.
this.rectSize = Math.floor(this.dom.width / w /2) * 2;
this.dom.width = w * this.rectSize;
this.dom.height = h * this.rectSize;
}
rectSize() {
return Math.floor(this.dom.width / w);
}
}
class UniverseState {
constructor(layers) {
this.tick = 0;
this.layers = layers;
}
neighboringLayers(layerIndex) {
const prevIndex = layerIndex-1;
const prev = prevIndex < 0 ? null : this.layers[prevIndex];
const nextIndex = layerIndex+1;
const next = nextIndex >= this.layers.length ? null : this.layers[nextIndex];
return [prev, next];
}
}
const defaultKnobs = {
maxNewElsPerTick: 10,
ageOfDeath: 30,
drift: 30,
neighborScalar: 0,
prevLayerScalar: 0,
prevLayerLikenessScalar: 0,
nextLayerScalar: 0,
nextLayerLikenessScalar: 0,
chaos: 0,
};
class Layer {
constructor(className, newEl, knobs = {}) {
this.className = className;
this.els = {};
this.diff = {};
this.newEl = newEl;
this.knobs = { ...defaultKnobs, ...knobs };
}
_normCoord(coord) {
if (typeof coord !== 'string') coord = JSON.stringify(coord);
return coord;
}
get(coord) {
return this.els[this._normCoord(coord)];
}
getAll() {
return Object.values(this.els);
}
set(coord, el) {
this.diff[this._normCoord(coord)] = {action: "set", coord: coord, ...el};
}
unset(coord) {
this.diff[this._normCoord(coord)] = {action: "unset"};
}
applyDiff() {
for (const coordStr in this.diff) {
const el = this.diff[coordStr];
delete this.diff[coordStr];
if (el.action == "set") {
delete el.action;
this.els[coordStr] = el;
} else {
delete this.els[coordStr];
}
}
}
update(state, thisLayerIndex) {
// Apply diff from previous update first. The diff can't be applied last
// because it needs to be present during the draw phase.
this.applyDiff();
const allEls = this.getAll().sort(() => Math.random() - 0.5);
if (allEls.length == 0) {
const newEl = this.newEl(this, [])
newEl.tick = state.tick;
this.set([w/2, h/2], newEl);
return;
}
let newEls = 0;
for (const el of allEls) {
const nCoord = randEmptyNeighboringCoord(this, el.coord);
if (!nCoord) continue; // el has no empty neighboring spots
const newEl = this.newEl(this, neighboringElsOf(this, nCoord))
newEl.tick = state.tick;
this.set(nCoord, newEl);
newEls++;
if (newEls >= this.knobs.maxNewElsPerTick) break;
}
const calcLayerBonus = (el, layer, scalar, likenessScalar) => {
if (!layer) return 0;
const nEls = neighboringElsOf(layer, el.coord, true)
const likeness = nEls.reduce((likeness, nEl) => {
const diff = Math.abs(nEl.c - el.c);
return likeness + Math.max(diff, Math.abs(1 - diff));
}, 0);
return (nEls.length * scalar) + (likeness * likenessScalar);
};
const [prevLayer, nextLayer] = state.neighboringLayers(thisLayerIndex);
for (const el of allEls) {
const age = state.tick - el.tick;
const neighborBonus = neighboringElsOf(this, el.coord).length * this.knobs.neighborScalar;
const prevLayerBonus = calcLayerBonus(el, prevLayer, this.knobs.prevLayerScalar, this.knobs.prevLayerLikenessScalar);
const nextLayerBonus = calcLayerBonus(el, nextLayer, this.knobs.nextLayerScalar, this.knobs.nextLayerLikenessScalar);
const chaos = (this.chaos > 0) ? randn(this.knobs.chaos) : 0;
if (age - neighborBonus - prevLayerBonus - nextLayerBonus + chaos >= this.knobs.ageOfDeath) {
this.unset(el.coord);
}
}
}
draw(canvas) {
for (const coordStr in this.diff) {
const el = this.diff[coordStr];
const coord = JSON.parse(coordStr);
if (el.action == "set") {
canvas.ctx.fillStyle = `hsl(${el.h}, ${el.s}, ${el.l})`;
canvas.ctx.fillRect(
coord[0]*canvas.rectSize, coord[1]*canvas.rectSize,
canvas.rectSize, canvas.rectSize,
);
} else {
canvas.ctx.clearRect(
coord[0]*canvas.rectSize, coord[1]*canvas.rectSize,
canvas.rectSize, canvas.rectSize,
);
}
}
}
}
const neighbors = [
[-1, -1], [0, -1], [1, -1],
[-1, 0], /* [0, 0], */ [1, 0],
[-1, 1], [0, 1], [1, 1],
];
function neighborsOf(coord) {
return neighbors.map((n) => {
let nX = coord[0]+n[0];
let nY = coord[1]+n[1];
nX = (nX + w) % w;
nY = (nY + h) % h;
return [nX, nY];
});
}
function randEmptyNeighboringCoord(layer, coord) {
const neighbors = neighborsOf(coord).sort(() => Math.random() - 0.5);
for (const nCoord of neighbors) {
if (!layer.get(nCoord)) return nCoord;
}
return null;
}
function neighboringElsOf(layer, coord, includeCoord = false) {
const neighboringEls = [];
const neighboringCoords = neighborsOf(coord);
if (includeCoord) neighboringCoords.push(coord);
for (const nCoord of neighboringCoords) {
const el = layer.get(nCoord);
if (el) neighboringEls.push(el);
}
return neighboringEls;
}
function newEl(h, l) {
return {
h: h,
s: "100%",
l: l,
c: h / 360, // c is used to compare the element to others
};
}
function mkNewEl(l) {
return (layer, nEls) => {
const s = "100%";
if (nEls.length == 0) {
const h = randn(360);
return newEl(h, l);
}
// for each h (which can be considered as degrees around a circle) break the
// h down into x and y vectors, and add those up separately. Then find the
// angle between those two resulting vectors, and that's the "average" h
// value.
let x = 0;
let y = 0;
nEls.forEach((el) => {
const hRad = el.h * Math.PI / 180;
x += Math.cos(hRad);
y += Math.sin(hRad);
});
let h = Math.atan2(y, x);
h = h / Math.PI * 180;
// apply some random drift, normalize
h += (Math.random() * layer.knobs.drift * 2) - layer.knobs.drift;
h = (h + 360) % 360;
return newEl(h, l);
}
}
class Universe {
constructor(canvasesByClass, layers) {
this.canvasesByClass = canvasesByClass;
this.state = new UniverseState(layers);
}
update() {
this.state.tick++;
let prevLayer;
this.state.layers.forEach((layer, i) => {
layer.update(this.state, i);
prevLayer = layer;
});
}
draw() {
this.state.layers.forEach((layer) => {
if (!this.canvasesByClass[layer.className]) return;
this.canvasesByClass[layer.className].forEach((canvas) => {
layer.draw(canvas);
});
});
}
}
</script>
<style>
.canvasContainer {
display: grid;
margin-bottom: 2rem;
text-align: center;
}
canvas {
border: 1px dashed #AAA;
width: 100%;
grid-area: 1/1/2/2;
}
</style>
<div class="canvasContainer">
<canvas class="layer1"></canvas>
<canvas class="layer2"></canvas>
</div>
<div class="row">
<div class="columns six">
<h3>Bottom Layer</h3>
<div class="canvasContainer"><canvas class="layer1"></canvas></div>
<div class="layer1 layerParams">
<label>Max New Elements Per Tick</label><input type="text" param="maxNewElsPerTick" />
<label>Color Drift</label><input type="text" param="drift" />
<label>Age of Death</label><input type="text" param="ageOfDeath" />
<label>Neighbor Scalar</label><input type="text" param="neighborScalar" />
<label>Top Layer Neighbor Scalar</label><input type="text" param="nextLayerScalar" />
<label>Top Layer Neighbor Likeness Scalar</label><input type="text" param="nextLayerLikenessScalar" />
</div>
</div>
<div class="columns six">
<h3>Top Layer</h3>
<div class="canvasContainer"><canvas class="layer2"></canvas></div>
<div class="layer2 layerParams">
<label>Max New Elements Per Tick</label><input type="text" param="maxNewElsPerTick" />
<label>Color Drift</label><input type="text" param="drift" />
<label>Age of Death</label><input type="text" param="ageOfDeath" />
<label>Neighbor Scalar</label><input type="text" param="neighborScalar" />
<label>Bottom Layer Neighbor Scalar</label><input type="text" param="prevLayerScalar" />
<label>Bottom Layer Neighbor Likeness Scalar</label><input type="text" param="prevLayerLikenessScalar" />
</div>
</div>
</div>
Once again, this visualization iterates upon the previous. In the last one the
top layer was able to "see" the bottom, and was therefore able to bolster or
penalize its own elements which were on or near bottom layer elements, but not
vice-versa. This time both layers can see each other, and the "Layer Neighbor
Scalar" can be used to adjust lifetime of elements which are on/near elements of
the neighboring layer.
By default, the bottom layer has a high affinity to the top, and the top layer
has a some (but not as much) affinity in return.
Another addition is the "likeness" scalar. Likeness is defined as the degree to
which one element is like another. In this visualization likeness is determined
by color. The "Layer Neighbor Likeness Scalar" adjusts the lifetime of elements
based on how like they are to nearby elements on the neighboring layer.
By default, the top layer has a high affinity for the bottom's color, but the
bottom doesn't care about the top's color at all (and so its color will drift
aimlessly).
And finally "Color Drift" can be used to adjust the degree to which the color of
new elements can diverge from its parents. This has always been hardcoded, but
can now be adjusted separately across the different layers.
In the default configuration the top layer will (eventually) converge to roughly
match the bottom both in shape and color. When I first implemented the likeness
scaling I thought it was broken, because the top would never converge to the
bottom's color.
What I eventually realized was that the top must have a higher color drift than
the bottom in order for it to do so, otherwise the top would always be playing
catchup. However, if the drift difference is _too_ high then the top layer
becomes chaos and also doesn't really follow the color of the bottom. A
difference of 10 (degrees out of 360) is seemingly enough.
<script>
const canvasesByClass = {};
[...document.getElementsByTagName("canvas")].forEach((canvasDOM) => {
const canvas = new Canvas(canvasDOM);
canvasDOM.classList.forEach((name) => {
if (!canvasesByClass[name]) canvasesByClass[name] = [];
canvasesByClass[name].push(canvas);
})
});
const layers = [
new Layer("layer1", mkNewEl("90%"), {
maxNewElsPerTick: 2,
ageOfDeath: 30,
drift: 40,
neighborScalar: 50,
nextLayerScalar: 20,
}),
new Layer("layer2", mkNewEl("50%", ), {
maxNewElsPerTick: 15,
ageOfDeath: 1,
drift: 50,
neighborScalar: 5,
prevLayerScalar: 5,
prevLayerLikenessScalar: 20,
}),
];
for (const layer of layers) {
document.querySelectorAll(`.${layer.className}.layerParams > input`).forEach((input) => {
const param = input.getAttribute("param");
// pre-fill input values
input.value = layer.knobs[param];
input.onchange = () => {
console.log(`setting ${layer.className}.${param} to ${input.value}`);
layer.knobs[param] = input.value;
};
});
}
const universe = new Universe(canvasesByClass, layers);
const requestAnimationFrame =
window.requestAnimationFrame ||
window.mozRequestAnimationFrame ||
window.webkitRequestAnimationFrame ||
window.msRequestAnimationFrame;
function doTick() {
universe.update();
universe.draw();
requestAnimationFrame(doTick);
}
doTick();
</script>
|